

Vassal Designer’s Guide

Version 3.7.20, 2025-10-19

Credits

VASSAL designed by Rodney Kinney

Designer(s Guide: Ed Messina (ed@crucible.cc, mycenae on the VASSAL forums)

Development Team: Rodney Kinney, Joel Uckelman, Brent Easton, Michael Kiefte, Tim McCarron,
Brian Reynolds, Yan Lyubashevskiy, Claudio Ciardelli

Testing: Thomas Russ
Website and Forum Management: Ben Smith

Comments on this document and suggestions for improvement are welcomed. Please contact Ed
Messina (ed@crucible.cc) with your comments and suggestions.

Programming skills are not necessary for creating fully functional VASSAL modules.

mailto:ed@crucible.cc

Table of Contents

Overview

Preparation
Graphic File Support
Graphic Filenames
Graphic Dimensions
Non-Rectangular Graphics
Performance Impact

The Module Editor
Launching the Module Editor
The Module Editor Window
The [Module] Node
Default Module Nodes
Suggested Module Filename Convention
Next Steps

Using Properties
Types of Properties
Property Names
Property Values
Comparing a Property to Another Property
Game Piece Properties
Message Formats

Maps and Boards
Types of Map Windows
Map Window Attributes
Docked Map Window
Boards
Creating a Map Window
Map Options
Recommended Map Options
Adding Options to a Map
At-Start Stacks
Game Piece Layers
Image Capture Tool
Last Move Highlighter
Line of Sight Thread
Map Shading
Mouseover Stack Viewer

Overview Window

10
11
11
12
12
14
15
15
18
20
21
22
23
23
23
23
26
27
28
29
29
30
31
32
33
33
34
34
35
36
39
40
40
42
43
45

Re-center Pieces BULOIL 46

Stacking OPtionsS. 46
Text Capture TOOL. 47
Toolbar MEeNU 48
Zoom Capability 48
Map GIIAS.o 49
HexX Grido 49
Rectangular Grid 50
Irregular Grid e 50
Multi-Zoned Grid 51
Zone Highlighters. 52
ZONe Properties 52
SIS . . . o 57
ODbServer SIAe 58
Next Steps: Restricting Components By Side. 58
Game PieCES 60
Game Piece Palette. 60
Creating Game PieCes 62
Trait DesCriptiOns. 65
ACtion BULTON o 65
Area Of EIfeCt. 66
BasiC PiecCe 67
Can PivOt . .. 69
Can Rotate 70
ClOME . . . 71
Delete . . 71
Does Not StaCko 71
Dynamic Property 72
Global HOtReY 73
Global Key Command 73
InViSible . . . 74
LAy er. . 75
Mark When Moved 79
MaT KT . . 80
MaSK . . 81
Move Fixed DiStance 83
Movement Trail 84
Non-Rectangular 85
Place MarKer 86
Play SOUNd o 86
Property Sheet 88

Prototype 89

Replace with Other 90
Report Action 92
Restrict Commands 94
Restricted Access 94
Return to Deck 95
Send to Location 96
Set Global Property 97
Spreadsheet 98
Sub-Menu 98
Text Label 99
Trigger Action 101
Prototype Definitions 103
Using Prototypes 104
Pre-Setting Traits in a Prototype 104
Prototype Definitions: Defining a Prototype 104
Game Piece Image Definitions 105
Game Piece Image Elements 105
Game Piece Layouts 107
Game Piece Images 110
Decks and Cards 112
Creating a Deck 112
Deck Properties 115
Creating Cards 115
Cards and Prototypes 116
Copying and Pasting Cards 116
Editing the Contents of a Deck 116
Card Properties 117
Deck Global Key Command (GKC) 117
Card Decks in Practice 118
Generating Random Results 121
Dice Button 121
Symbolic Dice Button 122
Random Text Button 124
Additional Module Components 127
Action Button 127
Charts Window 128
Game Piece Inventory Window 129
Global Key Command (Module Level) 131
Global Options 133
Global Property 134

Map Window Toolbars 136

Multi-Action Button 138
Notes Window 139
Toolbar Menu 140
Turn Counter 141
Pre-Defined Setups 146
About Saved Games 146
The Pre-Defined Setup Menu 147
Help Menu 150
PDF Help File 150
HTML Help File 150
Plain Text Help File 151
About Screen 151
Tutorials 152
Additional Topics 154
Importing Custom Classes 154
Module File Structure 154
File Components 154
Reducing Module File Size 155
Importing an Aide de Camp II Module into VASSAL 156
Translations 156
Translating the VASSAL Engine 158
Creating Module Extensions 159
What an Extension Can Do 159
What an Extension Can0t Do 159
Using the Extension Editor 159
Extension Properties 160
Universal Extensions 160
Extension Toolbar Menu Items 161
Extension Prototypes in the Base Module 161
Testing Your Extension 162
Activating an Extension 162
Publishing Your Module 163
File Types 163
Limitations 163
More Information 164
Updating a Module 165
Best Practices 168
Know the Game 168
Don[t Try to Enforce the Rules 168
Have All the Required Files on Hand 168

Carefully Target AUtOmMAatiON 168

Programmatic Efficiencies. 169
Documentation. 169
Play a Game! 169
Learn from Others. 169
TUtOrials 170
Getting Started 170
SIS . 170
Maps, Boards, and Grids 171
The Strategic Display. 172
COUNLRTSo 174
PrOtOty DS . o 177
Dice BULtON 177
N S DS oo 177

Card GaINC o, 177

Overview

VASSAL is a free, open-source engine for playing board games by computer. VASSAL supports many
types of games, including war games, hobby games, card games, miniatures games, and even
board- based role-playing games. You can play opponents live on the VASSAL Server or a peer -to
-peer connection, play by email, play by forum, or play offline in hot seat or solitaire modes. There
are several hundred VASSAL game modules available for free, and more are being created all the
time.

VASSAL is supported on Windows, MacOS, Linux, and other platforms. Thanks to VASSAL'S Java
architecture, players on different platforms can play each other without regard to operating
system.

VASSAL was originally created in 1999 by Rodney Kinney. The name VASSAL comes from its
original incarnation as a tool to play online games of the classic Advanced Squad Leader, and was
originally called Virtual Advanced Squad Leader, or VASL. VASSAL now extends play to a much
wider range of games.

This VASSAL Designerls Guide explains how to create game modules and extensions using the
Module Editor. It is strongly recommended that you be familiar with the contents of the VASSAL
UserOs Guide before attempting to create new modules. This guide covers version 3.7.20 of the
VASSAL Engine.

Because of VASSALDs easy to use interface, programming skills are not at all necessary for creating
fully functional VASSAL modules. In general, VASSAL modules are not “coded” or “programmed?”,
but designed. However, programming skills will definitely be helpful if you plan to create custom
functionality or features that the standard VASSAL toolbox cannot handle.

For information on installing VASSAL and using it to play games, consult the VASSAL User(s Guide.

Preparation

The permutations and combinations possible in board games are nearly infinite: there are board
games with a single board, and those with multiple boards; games with many simple pieces and
games where the behavior of the pieces is very complex.

As a result, it0s up to you to select the proper tools needed for the game you want to make.
Supported Game Types

The world of board games is vast, and VASSAL can accommodate a huge number of games. VASSAL
supports any of the following game types:

» Traditional board games such as chess, checkers, Monopoly, or Risk.

* Hex-and-counter, block, and card-driven war games.

* Hobby games, such as Eurogames.

* Card games (traditional, collectible, or limited).

* Role-playing games that use a tactical map.
This list is not exhaustive; most any type of board-based game could be played on VASSAL.

VASSAL is also an excellent platform on which to playtest new game designs. A game designer has
instant access to a worldwide audience of playtesters. No physical game sets need to be printed or
distributed. It0s easy to add or modify features of the game during the process of game
development, and feedback can be obtained in real time.

Live and PBEM Games: One advantage VASSAL has over many Internet board game applications is
its support of live play. You can log into the VASSAL server and play opponents in real time. In
addition, VASSAL can also be used for Play by Email (PBEM) games. You can even switch between
the two for the same game. There are no differences in design between modules played by email
and modules played live, although some features may improve game play for one style or the other.

Platforms Supported: VASSAL games can be played on Windows, MacOS and Linux platforms.
Further, because of VASSAL[s Java architecture, players on different platforms can play against one
another without regard to platform. If you have a Mac, and a friend runs Windows, you can play
any module against one another.

Scoping a Game

One step that will make building your module much easier is proper preparation. Before you begin
the design process, it pays to take time to scope your chosen game. The complete design of a module
can take anywhere from a few hours to a few weeks or more. A little planning beforehand can
make your module easier to build, easier to create, and easier to maintain later.

At a minimum, every board game has a board and pieces. Everything else is negotiable.
Before even opening VASSAL, some questions to ask include:

* Rules: What are the rules of the game?

* Flow: What0s the basic flow of play in the game? Whatls the goal of the game? What are the
sides?

* Gameplay Requirements: Are random results needed for the game? How are these results
generated? If dice need to be rolled, what kind of dice are rolled, and how many? Are turns
tracked in the game? (For example, in many war games, turns are numbered; but in Monopoly,
turns need not be tracked.) Are there limited pieces, or unlimited pieces, or some mix of the
two? Is this a tactical game? If so, will players quickly need to determine the range between
counters? Will players need a private area for personal possessions, such as cards, tokens, or,
units?

* Graphic Requirements: What graphics will you use? How many maps does the game need?
How will the counter images be generated? Will you need to prepare charts or other play aids?

* Other Requirements: Is there any special functionality or rules in the game? Will VASSAL be
able to handle them?

Examples of Game Scope

Shown here are some simple examples of game scope. Evaluating the elements of your game in
detail will make it easier to determine the required components in your module later.

Preparation: Graphics Files in Your Module
Chess

Chess is played on a single board and has two players. There are 6 kinds of pieces, in two colors, in
limited quantities. There are no random results and turns are not tracked. The pieces have no
special abilities, but are deleted from the game after being captured.

Small Wargame
A. typical hex-and-counter wargame depicting a single Napoleonic battle may have the following
scope:
o Two players.
o A single map of the battlefield.
o Turns are tracked.
o Six-sided dice are used to resolve battles.
o Limited pieces—units are placed at game start in fixed locations directly on the game board.
o On Turn 5, the French player receives limited reinforcements; a place will be needed to keep
these reinforcements until they are ready to enter.
Monster Wargame

An ambitious game depicting the entirety of World War II in the Pacific may have this scope:

* There are multiple large maps, depicting several theaters of operation.
* There are multiple sides.

* Players may deploy unlimited pieces, in several unit types and nationalities.

* There are dozens of different pieces available to each side.

* Game money is spent to construct and improve units. The money is in the form of paper
certificates that players exchange with the Obank.0 Players will need a place to keep their
unspent money and units before they deploy them.

* Unit counters can be improved through training, or be depleted by damage in combat.

* Leader counters will work differently from unit counters. Instead of being depleted, leaders are
killed (removed from the game).

* Turns are tracked, and phases and segments are tracked in each turn.

* The game uses six-sided and ten-sided dice to resolve game results.
Card Game
A card game might have this scope:

* No map image is needed, but a common space is needed to place cards (a OtablelD).
* There are multiple decks, each accessible only to certain players.
* Players will need a place to store their private hands and keep them secret from other players.

* Card decks will be needed: two draw decks and a discard pile. Cards will sometimes need to be
facedown or face-up.

* Turns are not recorded, but at the end of each turn, played Cards will be moved to the discard
pile. It would be nice to do this automatically.

The possibilities for a gamels scope are infinite. As a result, the burden is on you to determine how
best to assemble your module, using the tools at hand.

Graphics Files in Your Module

A simple module may have just a few graphic images. A more typical module would require dozens
or even hundreds of distinct images.

You need to create, scan, or otherwise acquire the graphics files to be included in your module.
Graphic file requirements for a module can include:

* Game boards (for one or more boards)
* Game pieces (for counters, cards, markers, and other game tokens)
* Charts (for tables and game aids)

¢ Button icons

VASSAL has a limited set of graphics files available for use in building modules. These include a
small set of default icons, which you can use for buttons. In addition, you can create a limited set of
pieces, using NATO military symbols. See page 69 for more details.

Graphic File Support

VASSAL supports graphic files in SVG, PNG, GIF, and JPG formats. These are listed in order of

10

preference, with SVG and PNG files being recommended over the other types. SVG and PNG files are
the most scalable and reliable, GIF files less so, while using JPG files can cause graphics issues with
the display of your module.

Graphic Filenames

When working with graphic files, consider these points:

Unique Names: Even if graphic files come from different locations on your hard drive, once added
to your module, they are stored in a common folder. A graphic file added to a module that has the
same filename as an existing file will overwrite any existing file. Accordingly, you should make sure
all of your graphic files are named uniquely, in order to avoid overwriting existing files.

In some cases, such as when updating a module, overwriting existing files may be desired. See page
110.

Naming Convention: You should establish a standard pattern for graphic filenames. This will help
when finding, replacing, or updating your graphics files later on, particularly in modules with
many individual files.

For example, in a World War II game, with pieces divided by nationality, division, and unit type,
and potentially hundreds of graphic images, you might use this system to help organize the image
files:

(3 letter national abbreviation)(Division #)(Unit Type)(Identifier).png.
Examples of resulting filenames from this system could be:

* GerDiv1Inf3.png: A PNG image for German Division 1, Infantry Type 3.

* AmeDiv2Arm4.png: A PNG image for American Division 2, Armor Type 4. Of course, you can
decide on any naming convention that fits your module best.

Graphic Dimensions

The dimensions of your graphics are an important factor in determining the performance impact of
your module. A module with many sizeable graphics can cause significant performance delays on
player systems. In addition, large graphic images can be awkward to manipulate on many
computer screens.

While there is no upper size limit to the dimensions of graphics you can use in your module, but for
best results, it0s suggested you adhere to the following guidelines.

* Main Boards: A typical main board is usually 2000-3000 pixels in its longest dimension, and
generally under 5000 pixels maximum. If a board graphic must be larger, consider breaking up
the board into two or more smaller boards and re-allocating screen real estate. A very large
map can be awkward to view on a screen, and will have a major impact on system
performance. For example, if the physical game includes a game map, a space for cards, and
game tables printed on the map, you could consider moving the card space to a Map Window
and the game tables to Chart windows. (In addition, a module can include tools to enable

11

players to re-scale their view of the map on screen, which can mitigate the limitations of a small
map.)

* Other Boards: Depending on their purpose, other Boards are usually smaller than the main
Board. For example, a Private Window intended to hold a player(s private pieces could be much
smaller than the main Board, perhaps 500 pixels across.

* Pieces: Pieces, obviously, must be scaled to fit your maps. In particular, if you use a Grid on the
map, the pieces must be appropriately scaled for the Grid cells. Most pieces like tokens and
counters are between 50-100 pixels across. (Some pieces, like cards or money tokens, are usually
larger than ordinary pieces, as they are in physical games. Cards are usually between 200-500
pixels across.)

* Charts: Chart graphics are typically from 500-1000 pixels across. (There is no Zoom function for
most charts, so for best use, they need to fit easily on most computer screens at full size.)

Preparation: Help and Text Files

* Icons: Button icons can be any size. There is no upper or lower limit on dimensions, but 10-50
pixels is probably the most useful size. Test the visual quality of your icons so you can decide on
a common, compatible size for your buttons. Icon buttons need not be all the same size, but they
should be sized to be easily visible and accessible by your players.

Non-Rectangular Graphics

Most graphics used in games (for example, map, counter, and card images) are rectangular (or
square). However, your graphics need not be rectangular if you make use of transparency in
creating the files. Both PNG and GIF files support transparency.

For example, to make a circular image for a coin counter, create the coin image as an ordinary,
rectangular PNG file in your image editor. Any portion of the image outside of the circular coin
portion would need to be marked as transparent using the image editor. When the image is added
to a game piece, the counter will look like a circular coin, with no empty space around it.

Game Pieces can include an optional Trait, Non-Rectangular, which can make using non-rectangular
graphics easier for players. See page 55 for more information.

Performance Impact

A module is not limited by size on a disk; it is limited by memory space available in RAM only. In
general, the graphics used in a module are the biggest driver of memory usage, requiring 4 bytes
per pixel for each image that is currently being displayed. Gauge the performance impact of your
module accordingly.

For example: A map measuring 2000x3000 pixels is displayed with 20 counters on the map that
measure 50x50 pixels each.

The total RAM required equals (2000 x 3000 x 4) + (20 x (50 x 50 x 4)) = 24,200,000 bytes, or
approximately 254 MB of RAM.

12

Help and Text Files

Modules can include any number of help and text files. These files can be used for various
purposes, such as:

* To supply help on how to use the module.

* To give credits and acknowledgements for the design of the module.

* To provide rules, rules summaries, or important charts.
Such files will need to be created in the HTML or text file editor of your choice. It0s a good idea to

create the necessary files before designing the module. This will make the module design process go
more smoothly.

For more information on help files, see page 99.
Additional Tools
The following tools may be useful to have on hand when designing a module:
* An image editor application: An image editor will be helpful, to create graphics or manipulate

and crop scanned artwork.

¢ A text or HTML editor: A text or HTML editor will be needed for the creation of text or HTML
help files.

* A scanner: A flatbed scanner is useful for scanning game art, such as maps, counters and cards.

* A Java compiler (for module developers): In most cases, and for most games, custom coding
will not be necessary for the creation of a module, and no Java programming skills will be
needed. VASSAL is flexible and powerful enough to handle the vast majority of available games
without any coding skills. However, a highly automated module may require custom Java
coding. In this case, a Java compiler may be necessary for the creation of custom classes. A
discussion of such custom coding is beyond the scope of this guide.

13

The Module Editor

You’re ready to begin building a module.
What is a VASSAL Module?

A VASSAL module is simply a set of compressed set of graphic, text, and other files, as well a
descriptive file (called a Build File, and stored in XML format) that describes how the other files are
expressed in play. A module file has the extension .vmod. There is no limit to the file size for a
module, but modules intended to be published to the Vassalengine.org site may be up to 75 MB in
size.

All of the files in a module are compressed using ZIP compression. As a result, anyone can examine
or retrieve the files that comprise any module by simply unzipping the module, using any ZIP
utility. (Unzipping a .vmod file is NOT necessary to play it.)

As VASSAL itself is open-source, so are VASSAL modules. Modules are freely editable in the Module
Editor, even ones that have been created already. (VASSAL includes no native way to lock or
encrypt a module, or otherwise prevent a module being opened in the Module Editor.)

See Module File Structure, on page 102, for more information on the BuildFile and other module files.
Module Creation Overview

VASSAL is designed to be a toolkit for the creation of board games, and like any toolKkit, is extremely
flexible. As such, itDs important to remember that there is no one right way to proceed when
creating a module. The process given here is a guideline drawn from experienced designers. Two
different designers who design modules for the same game in VASSAL are likely to produce very
different results.

In general, a VASSAL module is not “coded” in the traditional sense. Because of the graphic user
interface of the Module Editor, module creation does not require any programming skills. Someone
with no programming experience can design a simple, functional module in a very short time.

However, VASSAL module creation can entail familiarity with particular programming concepts ,
such as event sequencing, property comparison, manipulation of text strings, unit testing, and other
related notions from the world of software development.

In general, the process of creating a new module follows these stages:

I. Basics: Create the module and specify the basic settings. Choose the settings (and a board) for at
least one map. Save the new module.

AL Development: Create and define the modulels other game boards, Game Pieces, and other
controls required for game play. Additional controls can include turn counters, map buttons like
Zoom and Overview, dice rollers, game charts, scenarios, or other components. (This stage will
require the huge majority of development time, and may require multiple saves and restarts of
the module to see your changes take effect.)

BL Testing: Test your module. Check gameplay to make sure it works the way you want it to. It0s a

14

good idea to play a few complete games to make sure you haven(t left anything out. If not,
return to Stage III and adjust what0s needed.

IV. Publication: Publish your module to the Vassalengine.org web site, or distribute it in some other
method.

Using the Module Editor

The main utility for building modules is the Module Editor, an easy -to-use tool with a graphic
interface. In the Module Editor, you specify each component, and can assign values, settings, and
files to the component.

You install the Module Editor when you install VASSAL, along with the VASSAL Player, the Module
Manager, the Extension Editor, and other tools. Youlll be using the Module Editor in conjunction
with the Module Manager. For complete VASSAL installation instructions and directions on how to
use the Module Manager, consult the VASSAL UserQs Guide.

The Module Editor looks and operates the same on all platforms: Windows, MacOS, Linux, and all
other platforms.

Launching the Module Editor

To launch the Module Editor, in the Module Manager, select File | New Module.

The Module Editor Window

The Module Editor window includes a menu bar, a Toolbar, and Configuration window.
The Menu Bar
The Module Editor menu bar has the following menus:
* File: The File menu includes:

0. New Game: Starts a new game with the open module.

o. Load Game: Loads a saved game or log file.

0. Save Game: Saves a game in .vsav format.

0. Close Game: Closes the current game.

0. Begin Logfile: Begins a log file in .vlog format.

o. End Logfile: Closes an open log file in .vlog format.

0. Save: Saves the current module.
0. __ Save As...: Saves the current module under a new name.

= Edit: The Edit menu includes Cut, Copy, Paste, Move, Properties, and Translate. These
duplicate the functions from the Configuration window. See Configuration Window,

15

below, for more information.
= Tools: The Tools menu includes Create Module Updater and Update Saved Games.
= Help: The Help menu includes:
p. Help: Displays VASSAL HTML help.

0. Userls Guide: Shows the VASSAL User Guide (in PDF format)
0. Component Help: Displays HTML help for the selected module component.
0. Quick Start: Displays a short text file for VASSAL newbies.

0. About Module: Displays the module splash screen, with information about the module name
and version.

The Module Editor Toolbar
The Module Editor Toolbar includes the following buttons:

» Save, Save As: Duplicates the items of the same names on the menubar File menu. As with any
other application, save your work often.

* Help: Click Help to display the VASSAL HTML help.

HASSAUModhis Fditos

[Definition of Pla
@ [Global Optiens]
¥ @ Main Map [Map Window]
E3 [Map Boards)
" [Stacking options]
7 [image Capture Tool]
[Mouse-over Stack Viewer]
3 (Global Properties)
(3 [Additional Selection Highlighters]
~ [Last Move Highlighter]
¥ @ [Game Piece Image Definitions]
B (Named Colors)
» (@l [Font Styles)
[[Game Piece Layouts]
& [Global Properties]
[[Game Piece Prototype Definitions)
[[Game Piece Palette)
@l (Translations]

Menu Bar

The Configuration Window

Most of the effort of module creation is performed in the Configuration window. Any instructions
given here refer to using the Configuration Window to create or configure module components.

The Configuration window browser displays the modules components as nodes, in a hierarchical
tree view.

Each node displays a folder icon. Node types appear in brackets []. The component name precedes
the node type. For example, a node labeled Japanese Units [Game Piece Palette] would indicate a

16

Game Piece Palette component named Japanese Units.

Click the arrow next to each folder icon to toggle the expanded folder view and view the various
sub -components of the folder. Click the arrow again to contract the node.

You can perform any the following operations on components by right-clicking on the component
node and selecting the operation from the menu.

[Be[@
¥ @ [Module]

VASSAL Mgdulg Edi;or

» [[Help Men
[Definition of Pla
@ [Global Options]
v Main Map [Map Window]
&3 [Map Boards]
_~ [Stacking options]
7 [image Capture Tool]
[Mouse-over Stack Viewer]
3 [(Global Properties)
(3 [(Additional Selection Highlighters)
“ [Last Move Highlighter]
¥ [l [Game Piece Image Definitions]
£ [Named Colors]
» (@ [Font Styles]
[(Game Piece Layouts)
&l [Global Properties)
& [Game Piece Prototype Definitions)
[[Game Piece Palette]
@ [Translations]

The Module Editor, showing the Configuration Window, Menu Bar, and default nodes for a
new module.

Properties: Enables you to choose the settings for the selected component. For components that
have already been created, you can access the Properties dialog by double-clicking on the
selected component.

Translate: Enables you to set translations for the component into a language of your choice.
VASSAL is not localized; you must supply the translations for a given module component. See
Translations on page 104 for more information.

Help: Displays the VASSAL online help for the component.

Delete: Deletes the component. (There is no deletion confirmation prompt, so be careful.) You
can also press the Delete key on your keyboard.

Cut: Cuts the selected component pasting. A cut and paste will relocate the component.
(Alternately, press Ctrl-X on your keyboard.)

Copy: Copies the selected component for pasting. A copy and paste will make a new copy of the
component. (Alternatively, press Ctrl-C/Cmd-C on your keyboard to Cut.)

Paste: Pastes a copied or cut component. You can only paste a component to the appropriate
place in the tree (like to like). For example, you could copy and paste a Game Piece from one
palette to another palette, or to an At-Start Stack, but could not copy and paste the Game Piece
to a Turn Counter. (Alternatively, press Ctrl-V/Cmd-V on your keyboard to Paste.)

Move: Moves the component up and down in the tree view. Used to organize and order the
components in a logical sequence. (Order of components in the Configuration Window will also

17

determine the left-to-right Toolbar order of any buttons associated with the components. See
page 89 for more information.) After selecting Move, you are presented with a dialog to specify
a new location for the component in the tree view.

* Add <Sub-Component>: Many components include context menu, giving component-specific
options, accessible through a right-click. For example, the context menu for a [Map Window]
component includes a set of options allowing you to add map-specific components, such as a
Line of Sight Thread. When created, new sub-components will be shown at the bottom of the list
of the nodels sub-components. (Some of these options may themselves have further options.)

The [Module] Node

You create new module components by right-clicking on the [Module] node, the topmost node in
the Configuration Window. The node is labeled with the module name and contains all the other
nodes.

Using the menu from this node, you can create any of the following new components:

» Action Button

* Charts Window

* Dice Button

* Game Piece Inventory Window
* Game Piece Palette

* Game Piece Prototype Definition
* Global Key Command

* Imported Class

* Map Window
e Multi-Action Button

* Notes Window

» Player Hand
* Pre-defined Setup

e Private Window

 Random Text Button

» Symbolic Dice Button

e Toolbar Menu

* Turn Counter
Each of these components is discussed in detail in later sections.
Creating New Components

When creating new components, create just a few of each type of component that you need, and
test them first. If you find that you have made a mistake, or that you need to rework pieces or

18

components, you will not have to go back and correct possibly many examples of the problematic
components. For example, if you are creating Game Pieces, create a few Game Pieces first to make
sure they function as you intend, and then create the others as needed. (Prototypes can make this
process more efficient. See page 67 for more information.)

Copy and Paste

Copy and Paste can be an extremely useful tool when creating or editing a module, as it enables you
to create similar components very quickly. Most components in a module can be duplicated by copy
and paste. You can then edit the duplicate to create a similar component without having to adjust
all the settings.

For example, you may need to create two Map Windows. Each will have similar attributes, differing
only in the Board used for each. If you were to create each one individually, you would need to
specify the attributes one at a time for each Map Window. However, you could create the first one,
adjust the settings and options for the window to what you need, right-click to copy it, and then
paste it into the Configuration Window. You could then adjust the settings for the pasted one to
individualize it (such as including a new board graphic.) This would save a great deal of time.

The Module Editor will only permit pasting to the appropriate area of the Configuration Window: a
Map Window must be pasted into the top-level node of the module, Game Pieces may only be
pasted into Game Piece Palettes or At-Start Stacks, and so on.

You cannot cut/copy and paste components between modules.
Creating a New Module
To create a new module,

1. In the Module Manager, select File | New Module. The Module Editor opens with a new, empty
module with a set of default nodes. In addition, the VASSAL Player loads the game so you can
see your changes implemented.

Saving a Module
There are two types of saves.

» Save: As with any application, save your work as often as possible. Click the Save button in the
menu bar to perform a save.

» Save As: It0s generally good practice to save renamed copies of your module periodically, as
some modifications can be difficult to remove. Use the Save As button to save interim copies of
your module, under a new filename, before making major edits to your module.

Editing a Module
After a module is created, you can save it at any time, and come back to work on it later
To edit a module,
1. In the Module Manager, select the module you wish to edit and pick Edit Module. The Module

Editor opens the selected module for editing.

19

When the Module Editor is open, the VASSAL Player will also load your game in Edit mode. This will
enable you to test your module as you create it. Unlike an ordinary game, when in Edit mode, you
will not need to log in to the module to test it in the Editor. In the Module Manager, pick File | New
Game to start a game.

Refreshing the Editor

As you make changes to your module, many components you edit will reflect any changes you have
made to them in real time.

You will be able to see immediately how the edited component looks or works in the VASSAL Player.

Some modifications, such as new board graphics, sound files, or changes to Prototype Definitions,
may not be immediately reflected in the VASSAL Player. As well, the names of some components,
such as Game Piece Palette tabs, Charts, and Irregular Grid Regions, may be truncated after you
create them. This truncation is merely cosmetic. Any of these additions will require you to re-start
the Editor in order for them to be displayed correctly in the VASSAL Player.

As a result, a good habit is to save your work, close, and then re-launch your module after you have
made any major changes, particularly after adding or editing graphics files. Click Save , and then
close the Configuration Window. In the Module Manager, right-click your module and pick Edit
Module to re-load the module in the Module Editor. Any changes you have made to graphics or
components should be fully functional after a restart.

In some instances, you may edit a module but, frustratingly, the changes wonlt show up even after
you refresh the view. This can occur in games that load a Pre-Defined Setup at game start—changes to
a module will not be reflected in a Predefined Setup. See page 110 for more information.

Default Module Nodes

By default, a new module includes the following nodes. Not all of these nodes need be used in a
given module.

* [Module]: Includes all other nodes, and used to create module-level components.

* [Help Menu]: Customize the module help menu.

* [Definition of Player Sides]: Define optional player Sides.

* [Global Options]: Define global module settings for all players.

* Main Map [Map Window]: The default Map Window, which usually contains the gamels main
board. May be renamed, modified, or deleted. However, a module will usually include at least
one Map Window.

* [Game Piece Image Definitions]: Create optional game image layouts.

* [Global Properties]: Define optional module-level Properties.

* [Game Piece Prototype Definitions]: Define optional module Prototypes.

* [Game Piece Palette]: The default Game Piece Palette for generating pieces.

* [Translations]: Configure text strings to translate your module.

20

You can now enter the modulels basic settings.

Module Basic Settings

Module basic settings are displayed for the modulels entry in the Module Manager.
Game Name

Name the module whatever you like. It should correspond to the name of the game. (The module
name, which is displayed in the Module Manager, is distinct from the module filename.)

Version Number

Module version number is the number you assign to the current edition of the module. This must
be a numeric value. Module Version Number serves these purposes:

» Helps the players to identify the module version they currently are using.
* Acts as a check to make sure that games are created with the same version of the module.

* Ensures the Saved Game Updater Tool can apply attributes from a game created with later
version of the module to an earlier version.

Description

The module description is displayed for players in the Module Manager. The description should be
brief—no more than a line or so.

To set the module’s basic settings,

1. In the Configuration Window, double-click the [Module] node. (By default, this is labeled
Unnamed Module, but the name will change after the module is saved.)

2. In the dialog, enter values for Game Name, Version Number and Description.

3. Click Ok.

Suggested Module Filename Convention

When saving, choose a filename for the module. A suggested filename convention is <game
name>_<version number>.vmod.

For example, clue_1.3.vmod, would indicate version 1.3 of a module for Clue.

Whatever filename you choose, it Os recommended to always include version number in the
filename, so players can quickly tell which version of the game they have without having to open
the file.

Some older modules use .zip or .mod as a file extension. However, modules made for VASSAL 3.1 and
later must always be given the extension .vmod.

21

Next Steps

Now you can add other module components, like Map Windows, Game Pieces, and other items.
Depending on the scope of your game, some of these components may be optional for your game.
See the succeeding chapters for more information on these components.

22

Using Properties

A Property is an attribute of a module component (or the module itself), simply consisting of a
name and a value.

Properties are used by VASSAL when executing commands and for determining details of the
current game state or components.

Using Properties is an important part of automating your module.

Properties do nothing by themselves. They need to be evaluated by other VASSAL functions or
components. Properties can be used as selection criteria for certain pieces, to track game quantities
or game events, and for many other purposes.

Types of Properties
Properties come in two types: system Properties, and custom Properties.

* Many VASSAL components, such Game Pieces, Decks, Maps, Boards, Dice Rollers, and Turn
Counters, already have Properties defined for them. These are called System Properties. System
Properties for components are listed in the component descriptions in later sections.

* In addition, you can create and define custom Properties for Game Pieces, Map Windows, Zones,
and the module itself. Examples of custom Properties include Global Properties, Dynamic
Property Traits, and Marker Traits. Information on using component Properties, Traits, or
Global Properties will be found in their descriptions in this Guide.

Property Names

System Property Names: The names of System Properties are already defined for module
components. For example, all Game Pieces have a system Property named CurrentMap, the value of
which is the name the Map where the Game Piece is currently located. System Properties cannot be
renamed. System properties for module components are defined in this guide in the sections
describing those components.

Custom Property Names: The name of a custom Property you define, such as a Global Property,
Dynamic Property Trait, or Marker Trait, must be composed of alphanumeric characters (A- Z, 1-9),
and may contain a space (). The name cannot contain special characters or punctuation marks. To
avoid unpredictable behavior, the name of a custom property should not duplicate the name of a
System Property.

Property names are case-sensitive. For example, PowerLevel is not the same Property as
powerLevel.

Property Values

System Property Values: System Properties automatically take their values from the game state.
You won0 t need to assign values to System Properties manually (in fact, you cannot do so). Their

23

values will depend on the condition they describe. For example, the value of the CurrentBoard
Property for a Game Piece is the name of the current Board where the piece is located. If you
moved the piece to a new Board, the value of CurrentBoard for that piece would change
automatically to the name of the new Board.

Custom Property Values: You may assign values to custom Properties. You can assign any of the
following types of values:

* A string of text: By default, and unless defined otherwise, Properties will accept a string of text
as a value. Unless noted otherwise, this is the default type for most Properties. The value of a
text Property can include a space () character (for example, Foo Bar).

* Boolean value: Some Properties are simply checked to see if they are logically true or not. (These
are called Booleans.) A Boolean Property will have a text value that can be either Oyes/nol or
Otrue/falsel (not capitalized).

* Numerical: The value of a numerical Property is limited to positive or negative integers (or
zero), such as -5, 1, 0, -23, 134, and so on. You can designate some Properties (such as Global and
Dynamic Properties) as numerical when you create them.

As with Property Names, Property values are case-sensitive.
Displaying Properties

Game Piece property values are generally invisible to players unless you choose to display them,
using a Trait such as Text Label or Layer.

Comparing Properties

You create Property expressions to determine if a particular game condition is true. For example,
since a System Property named LocationName is used to record a piecels current location, we could
check the value of this Property to determine if the piece is currently situated in Hex 1212.

Property expressions are found in many components of a module, and you set them in the dialog
boxes for those components when you choose the component settings. Expressions are also
sometimes called filters, because they filter out situations where the comparison does not apply.

An expression must use one of the following symbols (known as operators) to evaluate the
relationship between two values.

Traditionally, a space character () is placed between the Property, the operator, and the value, to
improve legibility. However, spaces between them is not required. (CurrentTurn >= 5 is the same
expression as CurrentTurn>=5.)

The following table shows each valid operator, the meaning, and under what conditions a
comparison using the operator will be true.

Operator Meaning True if...

= Equals The two values on either side
are the same.

24

I= Is Not Equal To The two values are not the
same. (The exclamation point
(1) is known as a Obang(l.)

=~ Regular Expression The Property value is equal to
any one of several values,
which are separated by a

pipe (|) character. See Regular Expressions, below,
for more information.

I~ Regular Expression (Negation) The Property value is not equal
to any one of several values,
which are separated by a pipe
(]) character. See Regular
Expressions, below, for more
information.

> Greater Than The value on the left side is
larger than the value on the
right. Applies to Numerical
Properties only.

>= Greater Than Or Equal To The value on the left side is
larger than or equal to the
value on the right. Applies to
Numerical Properties only.

< Less Than The value on the left side is
smaller than the value on the
right. Applies to Numerical
Properties only.

<= Less Than Or Equal To The value on the left side is
smaller than or equal to the
value on the right. Applies to
Numerical Properties only.

Types of Expressions

Typically, expressions are used in a module component to determine the conditions under which
the effects of the component should apply. There are several kinds of expressions, which include:

» Simple expressions, which check the Property to see if matches a single value.

* Regular expressions, which check the Property for any of several values.

» Comparing the value of the Property to the value of another Property.

* Indirect comparisons, where one Property name contains the name of another Property.

* Joined comparisons, which can check for multiple conditions.

When creating comparisons, remember that Property names and values are case-sensitive.

25

Simple Expressions
To check if the value of a Property matches a single value, use a simple expression. For example:

* PieceName = Paratrooper (text)
e CurrentTurn = 10 (numerical)
¢ ObscuredToOthers = true (Boolean)

In these comparisons, the value on the right side is called a literal, because the text, number, or
condition must be literally true—as written—for the comparison to be true.

Regular Expressions

A regular expression checks if a Property has any one of several values. A regular expression is
denoted using the =~ operator. Surround the name of the Property on the left side with $-signs, and
separate each value by a pipe character (|). There must be no spaces between pipe-separated
values. For example:

0 CurrentPlayer =~ Blue | Green | Red (checks if the Blue, Green or Red player is the current player)

You can also negate regular expressions by using !~ instead of ~=.

Comparing a Property to Another Property

On occasion, you may need to compare the value of one Property to the value of another. In this
case, surround the name of the Property on the right side of the operator with $-signs (such as
$PieceName$) to indicate that the Property with that name should be checked for its value. (Do not
use $-signs in the left side of the expression. The left side of the expression is always treated as the
name of a Property.) Examples:

» PieceName = $ActivePiece$ (checks if the name of a selected piece is the same as the value of the
$ActivePiece$ Global Property.)

e CurrentTurn = $2d6_result$ (checks if the current turn is the same as the random roll of 2 dice.)

In these comparisons, the Property on the right, in $-signs, is called a variable, because its value may
vary.

Indirect Comparisons

In an indirect comparison, one Property name contains the value of another Property. Set the name
of the Property in the left side by using $-signs. For example, if the Property Example has a Property
name as a value, then to compare the value of the Property contained in Example to a value, use $
on the left side of the operator.

¢ $Example$ = 2

Use $ (dollar) signs within the name of a custom Property to indicate that the Property contains the
name of another Property. For example, in a game with Red, Green and Blue players, the value of
the $PlayerSide$ Property can be Red, Green, or Blue. Using the Send to Location Trait, we want to

26

send a card to the current active player0s private window (each named Red_Home, Green_Home,
Blue_Home). For the Traitds destination we could use the Property $PlayerSide$_Home. When
evaluated, the value of $PlayerSide$ would be substituted in the string, giving a final value for
$PlayerSide$_Home of Red_Home, Green_Home, or Blue_Home.

Joining Expressions

You can check for multiple conditions using AND (&&) as well as OR (||) to join expressions
together. For example, to check if a

Game Piecels current board was called Battlefield, and that the piece was an Artillery piece, we
would evaluate:

CurrentBoard = Battlefield && PieceName = Artillery
* In an AND comparison, both compared Properties must be true for the entire expression to be
true.
* In an OR comparison, only one of the compared Properties must be true for the entire

expression to be true.

Complex expressions with multiple joins are possible. (Parentheses and brackets are not
supported.) Joined expressions are evaluated from left to right, with OR (| |) operators evaluated
before AND (&&).

For example,
CurrentBoard = HQ | | CurrentBoard = Battlefield && PieceName = Artillery | | PieceName = Tank

This would evaluate to true if the piece were on either the HQ or Battlefield maps, and was either
an Artillery or Tank unit. If the piece were on the HQ map, but was an infantry unit, it would
evaluate to false.

Game Piece Properties

Each Game Piece has its own set of System Properties (each with a name and a value) that can be
used for identification by various components.

When looking for the value of a Property of a Game Piece, Global Properties provide the default
values. If the Property is not defined on the Game Piece itself, the value will come from a Global
Property attached to Zone occupied the by piece, the Map to which it belongs, or the Module
overall, in that order.

Traits on a Game Piece search for Properties in the following order:

1. Within each Trait on itself in order from the Trait at the bottom of the list, up to the top Trait.
2. Zone Global Properties defined for the Zone where the Game Piece is currently located.
3. Map Global Properties defined for the Map where the Game Piece is currently located.

4. Global Properties defined at the module level.

27

A Game Piece cannot directly access:

* Properties on another Game Piece.
* Zone Global Properties on a Zone that the Game Piece is not currently located in.
* Map Global Properties on a map that the Game Piece is not currently located in.
For most components, system Properties are hardcoded as part of the VASSAL engine. However, for

Game Pieces, you can create entirely new Properties using the Dynamic Property, Marker, and
Property Sheet Traits. See Game Piece Traits on page 42 for more information.

Message Formats

Many Traits and module components enable you to customize the message that is displayed to
users in the Chat Window when game events take place. A Message Format is a formula for creating
such a message to players. Message formats are highly customizable and usually include Properties
as variables.

For example, the Dice button control includes a message indicating the result of the dice, which is
specified in Report Format. The default message for the Dice button is $name$ =
$result$*<$playerName$>. This formula indicates the format of the message to be displayed.

* $name$ is evaluated for the name of the Dice button.

* $result$ is the results of the roll.

* $playerNames$ is the name of the player who clicked the button.

If Bill clicked a Dice button named 2d6, and the result was 5, the message displayed in the Chat
Window would be: 2d6 = 5*<Bill>.

Constructing a Message Format

In a Message Format, any word surrounded by $-signs represents a variable, the value of which will
be determined when the message is generated during play. When constructing a Message Format
for a component, click the Insert drop-down menu for a list of available variables for the Message
Format. Selecting one of the variables from the menu will insert it at the current cursor position.

Words not surrounded by $-signs will be treated as plain text. This enables you to create plain-
language messages using a combination of text and variables.

When a Message Format is used in conjunction with a Game Piece, then any Properties of that
Game Piece can be used in the Message Format. See page 44 for more information on Game Piece
Properties.

28

Maps and Boards

A board is a playing surface on which pieces are moved. Boards are displayed in map windows. By
default, a module has one main map window, but is possible to have multiple map windows, and
pieces can be moved between them.

Some games have multiple boards, and a single one is selected at game start to play on. Other
games include multiple board segments, which are used to build the complete game board at game
start. Multiple maps can come in handy to make better use of screen 0 real estate.l For example, in
a physical game, pieces, cards and other items might all be stored on the main game board. But in a
VASSAL module, you can have a separate Map Window for the main board, another specifically for
a deck of cards, and others to store playersl personal items like tokens. You can also add buttons to
toggle visibility of these windows, so they can be hidden from view when not in use.

Types of Map Windows

The following types of map windows are available.
Standard Map Window

The standard Map Window holds one or more boards to play on. By default, a new module includes
a [Map Window] node called Main Map, but you can change the name of this default, as well as add
any number of new Map Windows.

Private Window

A Private Window works just like a regular Map Window, and has all the same options, but includes
an additional control to specify which Sides can access the window. Only the owning Side (or Sides)
will be able to access the window. You can further specify whether pieces in the Private Window
are visible to other Sides. A Private Window can be used for players to store personal items needed
in the game, like units, cards, or money.

Player Hand

A Player Hand is like a Private Window, but specifically intended for use to store a playerQs
personal hand of Cards. Items placed in a Player Hand Window will be displayed side by side,
horizontally, and will not stack. The owning Side can manipulate Cards (such as turning them face
up or face down), and drag new pieces to the Hand. Like a Private Window, you can specify which
Sides can access the Player Hand, and whether items in the Player Hand are visible to other players.

To make best use of Private Windows or Player Hands, you will need to add Sides to the game. See
page 37 for more information on adding Sides.

Chart

A Chart can be defined as a Map Window. This is useful if the players need to interact with the
chart in some way, such as to move a tracking piece to record the current turn, player income, or
victory points. See Charts on page 84 for more information on creating a Map Window as part of a
Chart.

29

Maps can be hidden from view, which can be handy if the pieces on the map are performing some
automated function, such as drawing from a Deck of Cards that sends Cards to players automatically.
For more on creating hidden maps, see Hiding Toolbar Buttons on page 90.

Map Window Attributes

Each map window may include these settings.
These settings apply to Private Windows and Player Hands only:

* Belongs to Side: Click Add to add the name of a Side. Only Sides on this list will have access to
this Private Window or Player Hand. You may add multiple Sides to the list of owners to enable
multiple players to access the window. Once these Sides are set, players may not change the list
during a game.

* Visible to All Players: If selected, non-owning players will be able to view the contents of
Private Window or Player Hand.

* Use the Same Boards as This Map: A Private Window or Player Hand may be set to
automatically use the same boards as another map window. If left blank, then the Private
Window will use its own set of boards.

The rest of these settings apply to all Map Windows, Private Windows, and Player Hands.

* Map Name: The name of this Map Window. Each Map Window in the module should have a
unique name.

* Mark Pieces That Move: If selected, then any Game Pieces with the Mark When Moved Trait
will be marked when they are being moved in this Map Window. You can also allow players to
set this option in their Preferences.

* Horizontal/Vertical Padding: The dimensions of the blank space, in pixels, surrounding the
boards in the window.

* Background Color: The color to use in the blank space padding.

* Can Contain Multiple Boards: If selected, when setting up a new game, the player is prompted
for how to arrange the available boards (those assigned to the Map Window) into rows and
columns. Useful if the gamels main board is comprised of sections that may be arranged
differently for different games.

* Border Color For Selected Counters: The color of the border to draw around pieces that have
been selected.

* Border Thickness For Selected Counters: The thickness of the border, in pixels, drawn around
pieces that have been selected.

* Include Toolbar Button To Show/Hide: By default, a Map Window is automatically visible
when a game begins. However, if this is checked, then this Map Window will not be
automatically shown. Instead, a button to show or hide this window will be added to the Main
Controls Toolbar. You can specify these settings for the toolbar button:

o. Toolbar Button Text: Text of the optional Toolbar button.

30

o. Toolbar Tooltip Text: Tooltip of the optional Toolbar button.
0. Toolbar Button Icon: Icon for the optional Toolbar button.
0. Hotkey: Keyboard shortcut for the optional Toolbar button.

In VASSAL 3.1.18 and later, entry boxes to specify Toolbar button text, tooltip, icon, and hotkey will
not be available until the module is saved, exited, and then reloaded. After exiting and reloading the
module, and reopening the map window dialog, you will be able to specify values for these settings.

* Auto-Report Format For Movement Within This Map: A Message Format that will be used to
report movement of

pieces completely within this Map Window: pieceName is the name of the piece being moved,
location is the location to which the piece is being moved (in the format specified above),
previousLocation is the location from which the piece is being moved. (Note that this message will
only be triggered by drag-and-drop piece movement, but not by the Send to Location Trait.)

* Auto-Report Format For Movement To This Map: A Message Format that will be used to
report drag-and-drop

movement of pieces to this Map Window from another Map Window: pieceName is the name of the
piece being moved, location is the location to which the piece is being moved (in the format
specified above), previousLocation is the location from which the piece is being moved,
previousMap is the name of the map from which the piece is being moved. (Note that this message
will only be triggered by drag-and-drop piece movement, but not by the Send to Location Trait.)

* Auto-Report Format For Units Created In This Map: A Message Format that will be used to
report pieces that are

dragged to this Map Window directly from a Game Piece Palette: pieceName is the name of the
piece being moved, location is the location to which the piece is being moved (in the format
specified above).

* Auto-Report Format For Units Modified On This Map: A Message Format that will be used to
report changes to

pieces on this map: message is the text message reported by the Report Action Trait of the Game
Piece being modified.

* Key Command to Apply to All Units Ending Movement on This Map: You can specify an
optional keyboard shortcut that will be applied to any pieces that are moved on this map. Use
this box to force a Game Piece to execute the same command every time it is moved.

Docked Map Window

By default, the first Map Window in the Editor (that is, listed topmost in the Editor window) will be
shown docked (attached) to the module main controls and Chat Window. This is usually the Main
Map. All other Map Windows will be detached from the toolbar as separate windows.

31

Players can control this on an individual basis by de-selecting the Use Combined Application
Window checkbox, under Preferences, and then restarting VASSAL. Deselecting this will cause all
windows to be shown undocked (detached) from the module main controls for that player.

Boards

Once youllve created a Map Window, you must add one or more Boards to it. If you attempt to save
a new module without assigning at least one Board, the Module Editor will prompt you to assign
one.

The [Map Boards] Node

Some games include multiple boards (or board segments). The beginning of such games consists of
either selecting a board to play on, or laying out the board segments for play, sometimes in rows
and columns.

If the Can Contain Multiple Boards option is checked for the Map Window, and multiple boards
are defined for it, a player launching a module is presented with a dialog prompting for a board
selection, or for board layout.

If the game includes a random map layout, you may wish to create Map Tiles using the Deck function.
See page 77 for more information.

The [Map Boards] node settings control the dialog presented for multiple boards. The player is
prompted to select the Boards used in the game and their arrangement. (To enable the selection of
multiple Boards, when defining the Map Window, select Can Contain Multiple Boards.)

If the Map Window only includes a single board, the settings in this node may be ignored.

* Dialog Title: The title of the dialog window for choosing boards on this map.

» "Select Boards" Prompt: The prompt message in the drop-down menu for selecting boards.
(For example: Choose map sheets for the game.)

* Cell Scale Factor: The relative size of the boards displayed in the dialog compared to their final
size during play.

* Cell Width: The width of a cell when no board has been selected.
* Cell Height: The height of a cell when no board has been selected.

* Select Default Board Setup: Click to choose a default set of boards. When a default has been
set, the dialog will not be shown to players when a new game is begun. Instead, the game will
always be started with the boards you select. If you click this button and then clear the boards,
then dialog will again be shown at the start of each game.

Boards

When creating a board, you can choose to define a solid color field of any dimension, or you can
use an imported image, such as a scan of a game board.

32

B Board 1

Board name: |Board 1 |

Board image: | Select ii\nspt .png
[_| Reversible:
| Ok l Cancel | Help ‘

* Board Name: Identifying name of the board.

* Board Image: Click Select to select a board image.

Board Width/Height: Dimension, in pixels, of the board if no image is used.

* Background Color: Color of the board, if no image is used.

Large board image size can have an impact on system performance. See page 8 for more information.

Creating a Map Window

To create a Map Window and one or more boards,
1. Right-click the [Module] node and pick Add Map Window. The Map Window is added to the
Configuration window.
In the Map Window dialog, specify the window settings.
In the Configuration Window, expand the [Map Window] node.
Right-click the [Boards] node and pick Properties.
In the Map Boards dialog, enter the settings for the dialog used to select boards at game start.
Right-click the [Map Boards] node, and pick Add Board.

On the Board dialog, enter the details of the new map board.

® N e ok W

Repeat Steps 6-7 for any additional boards as needed.

By default, a module includes a Map Window called Main Map. You must perform the above
procedure for the Main Map (starting from Step 3) before saving the module.

Map Options

By selecting options for the Map Window, you can customize the behavior of pieces on it. By
selecting different options for different maps, the same piece may behave differently when on
those maps.

Customize a Map Window with any of the options listed here. Each new option added to a Map
Window will create a corresponding node with its own settings.

* Additional Selection Highlighter
o At-Start Stack

* Game Piece Layers
* Global Key Command

33

* Hide Pieces Button

* Image Capture Tool

» Last Move Highlighter
 Line of Sight Thread

* Map Shading

* Mouseover Stack Viewer

e OQverview Window

e Re-center Pieces Button

» Stacking Options
» Text Capture Tool
e Toolbar Menu

» Zoom Capability

Default Nodes: A newly created Map Window includes these nodes by default: [Stacking Options],
[Image Capture Tool], [Mouseover Stack Viewer], [Global Properties], [Additional Selection
Highlighters], and [Last Move Highlighter]. You can configure these nodes, delete unneeded ones,
or freely add new ones to the Map Window.

Recommended Map Options

Although all Map Options have their uses, always consider adding these visibility options to each
Map:
* Mouseover Stack Viewer: (see page 28) Enables viewing of the contents of a stack of pieces.

» Show/Hide Pieces: (see page 26) Enables players to toggle piece visibility, to view the map
directly without moving or interfering with pieces.

* Zoom Capability: (see page 31) Enables re-scaling of the Map, for easier viewing.

Adding Options to a Map
To add an options node to a Map Window,

1. Right-click the selected [Map Window] node, and select an option to add from the context
menu.

2. As the option is added, a dialog box is shown. Specify the option settings in the dialog box.

3. Repeat Steps 1-2 until all desired options are added.

34

Active if Properties Match: (type = Albatross |
[] Use Image

Border Colnr:l Select ‘

Border Thickness: 3
‘ Ok I Cancel | Help I

Additional Selection Highlighter

An Additional Selection Highlighter enables you to define additional Tpways to highlight the
selected piece on a map. The additional highlighters are drawn only if the selected piece matches
the specified Properties. If a Game Piece matches the

Properties of more than one highlighter, all will be drawn, in addition to the highlighting
color/border specified in the Map’s Properties.

An Additional Selection Highlighter has these attributes:

« Name: Short name of the component.

Active if Properties Match: The highlighter will be drawn for all Game Pieces on the map that
match the given Property expression.

» Use Image: Specify an optional image to be overlaid on top of the selected piece. The center of
the image will be offset from the center of the piece by the given number of pixels.

Border Color: The color of the border to be drawn around selected pieces.

e Border Thickness: The thickness of the border.

At-Start Stacks

An At-Start Stack is a stack of playing pieces that is automatically placed at the beginning of every
game. Once the game begins, the pieces will be in place just as if they had been dragged from the
Game Piece Palette.

First define the name, map, and position of the At-Start Stack, and then create the individual pieces
in the Stack. (You can cut and paste pieces to an At-Start Stack from a Game Piece Palette, or other
At-Start Stack.)

An At-Start Stack could be used for the following:

* Any group of Game Pieces whose quantity is fixed (for example, the number of houses in a
Monopoly set).

* Game Pieces which are found in the same place on the board at the beginning of every game
(and every game scenario). If the starting pieces or their positions will vary based on the
scenario, use a Pre-Defined Setup instead. (See page 97 for more information on Pre-Defined
Setups.)

An At-Start Stack should only include the pieces at a given starting location. For example, chess
pieces start in 32 locations on the board, and so would require 32 different At-Start Stacks, each
consisting of 1 piece each.

35

If Game Pieces are to be drawn randomly from a selection of pieces, use a Deck instead of an At-Start
Stack. See page 74 for more information on Decks.

MName: |Russian| |

T 1
Belongs to Board: |RB Map w |

[[] Use Grid Location:
X position: |1603 |
Y position: !—3 105 |

Reposition Stack

‘ Ok | Cancel | Help |

An At-Start Stack has these attributes:

* Name: Identifying name of the stack. (Not used during play.)

* Belongs to Board: If a name is selected, the stack will appear on that particular Board. If a
game does not use that Board, then the stack will not appear. If Any is selected, then the stack
will always appear at the given position, regardless of the boards in use.

* Use Grid Location: If selected, you can enter the position of the stack using a descriptive
location name. This can be the name of a grid point or cell number (for example, on a hex grid,
1515 would place the stack in hex 1515.) Otherwise, you must specify X and Y coordinates.

* X, Y position: The position in the Map Window of the center of the Deck. If this stack belongs to
a Board, the position is relative to the Board’s position in the Map Window.

* Location: The location of the stack as a descriptive location label as returned by Grid
Numbering or the name of a Region. The Grid numbering system must provide enough
information to define a specific location on the map (for example, $GridLocation$). However, if
a zone in a Multi-zone Grid does not specify a Grid, the center of the zone will be selected.

EXAMPLE: A strategic game in which a nationality has a fixed force pool of Infantry and Armor
counters can be modeled by making a Map Window representing the force pool, with an At-Start Stack
of Infantry counters and an At-Start Stack of Armor counters.

Editing the Contents of an At-Start Stack

You can make wholesale changes quickly to the entire contents of an At-Start Stack in the Editor. In
the Configuration Window, right-click the [At-Start Stack] node and pick Edit All Contained
Pieces. The Properties dialog for the first piece is displayed, but any changes you make in the
Properties dialog will affect all Game Pieces in the At-Start Stack. Add, remove or edit Traits as
usual, then click Ok. Your changes are applied to all Pieces in the At-Start Stack.

Game Piece Layers

Using Game Piece Layers (GPLs) enables you to specify that certain Game Pieces will always be
drawn on top of others. GPLs function like a set of transparent sheets, laid in ascending or
descending levels. Pieces on one of the levels will not stack with pieces drawn on other levels above
or below it.

After defining the GPLs for a Map, you need to use a Marker Trait to assign each Game Piece (or
Prototype) to a GPL. Pieces with no value for the Marker Trait will be drawn on the topmost layer.

36

See page 52 for more information on assigning a Game Piece to a Game Piece Layer.

B Game Piece Layers

Property name for layer: \Layar
Layer Order

Alr |

Add I Remove [Insert |

Land

| ok I Ccancel | Help ‘

The GPL option has these settings:

* Property Name for Layer: Property name for the Marker Trait used to identify the piecels GPL.
The default value is Layer.

* Layer Order: Click Add to specify the Layer order. Each corresponds to the piecels value for
the Marker Trait used to identify the GPL. Layers are shown in inverted order from their layout
on the map; that is, layers shown at the top of the list are drawn below the ones after them.

Example: A Map has a Game Piece Layer specified with Property name Layer and Layer Order
Terrain, Land, Air. Any piece with a Marker Trait with Property name Layer and value Terrain will be
in the bottom-most layer. The middle layer will contain pieces with the value Land, and the top layer

will contain pieces with the value Air. Pieces with no value for the Layer Property will be in their own
layer, above all three.

The Game Piece Layer Map option is not related to the Layer Trait for Game Pieces. See page 49 for
more information on the Layer Trait.

Game Piece Layer Control

The Game Piece Layer Control adds a button to the Map Window Toolbar that enables you to

activate or deactivate the Game Piece Layers for that map, and to change their relative order. Game
Pieces belonging

B Game Piece Layer Control
Button text: |Reset Layers

[Tooltip text:
Button Icon: Select
Hotkey:

Action: ESwitch Layer between Active and Inactive lv
Affect which layers? (Use layer names or numbers)

Land ‘

Add ’ Remove] Insert]

| 0k | cancel | Help |

to GPLs that have been deactivated are hidden from view until the Layer is activated again.

Each player can activate or deactivate Layers independently, and layer activation is not saved when
the game is saved.

The Game Piece Layer Control has these settings:

¢ Button Text: Text label for the GPL Control button.

37

* Tooltip Text: Tooltip text displayed on mouseover.

* Button Icon: Icon used for the GPL Control button.

* Hotkey: Keyboard shortcut for the button.

 Action: Action taken when the button is clicked. Choose one of the following:

0. Rotate Layer Order Up/Down will change the relative order of the Layers on the map, moving
each layer up or down by one in the order.

0. Make Layer Active/Inactive will activate or deactivate the specified Layers.

0. Switch Layer between Active and Inactive will toggle the specified layers between active and
inactive.

0. Reset All Layers makes all Layers active and restores them to their default order.
Global Key Command (Map Window Level)

The Global Key Command (GKC) adds a button to the Map Window Toolbar. Clicking the button will
select certain pieces in the Map Window and apply the same keyboard command to all of them
simultaneously.

By default, a Global Key Command assigned to a Map Window will only affect pieces in the Map
Window to which it is assigned. You can specify a new map window by including a CurrentMap
expression in Matching Properties, which will override the default window. (For a GKC that will
affect pieces on any map, use the GKC (Module Level) control, described on page 87.)

The Global Key Command has these settings:

» Description: A description of the action, used for the button’s mouseover tooltip.
* Key Command: The keyboard command that will be applied to the selected pieces.

* Matching Properties: The command will apply to all pieces on the map that match the given
Property expression.

* Within a Deck, Apply To: Select how this command applies to pieces that are contained within
a Deck.

Clear Fired Status

Description: |Clear Fired Status |
|

ey Command: |CTRL F

atching properties: |canfire = true && Fired_Active = trus)

(Within a Deck, apply to: |n|| pieces ‘ bl
Button text: |Fired |
Tooltip text: |Reset Fired Status [

Button Icon: | Select l Default

Hotkey: |ALTF |
lv| Suppress individual reports?

Report Format: Fire status clearaed| Insert o

; Ok I Cancel [Help

0. No pieces means that pieces in a Deck ignore the command.

38

0. All pieces means that the command applies to the entire Deck.

0. _ Fixed number of pieces enables you to specify the number of pieces (drawn from the top)
that the command will apply to.

= Tooltip text: Mouseover hint text for the Toolbar button.
= Button Text: Text for the Toolbar button.

= Button Icon: Icon for the Toolbar button.

= Hotkey: Keyboard shortcut for the Toolbar button.

= Suppress Individual Reports: If selected, then any auto-reporting of the action by
individual pieces by the Report Action Trait will be suppressed.

= Report Format: A Message Format that will be echoed to the Chat window when the
button is pressed.

Commands applied by Global Key Commands will be affected by piece ownership. If the GKC triggers a
command that is restricted by side, the action may not take place as intended when the restricted side
triggers the GKC (by button or other command).

Hide Pieces Button

Clicking a Hide Pieces button will temporarily hide all pieces on the map from the clicking player,
until the button is clicked again. This is useful to get a better look at the game board, such as to read

a map label, terrain hex, or legend. (To make pieces invisible to other players, use the Invisible
Trait.)

The Hide Pieces Button has these settings:

B Hide Pieces Bution
Button Text: Hide Units|

Tooltip text: [Hide all pieces on this map
Hotkey: |ALT H

icon when pieces are showing: ﬁ Select l Default J
con when pieces are hidden: {} | Select | Default

| 0Ok] cancel] Help |

* Button Text: The text of the Hide Pieces button to be added to the Toolbar.
» Tooltip Text: Text shown on mouseover.

» Hotkey: Keyboard shortcut for toggling hidden pieces.

* Icon When Pieces are Showing: Button shown when pieces are visible.

* Icon When Pieces are Hidden: Button shown when pieces are hidden.

If possible, use a different button image for the showing and hidden icons. Players will be able to more
clearly determine when the button has been clicked and when pieces are hidden from view.

Image Capture Tool

The Image Capture tool component adds a button to the Toolbar of the Map Window. Clicking the

39

button will copy the contents of the Map Window to a PNG image file. Using the Image Capture
Tool, you can take an image of the entire map, shot even if the Map Window is too large to fit
entirely on the screen.

n Image Capture Tool

Button Text: (Save Map Picture
Tooltip Text: |Sa\re Map as PNG file

Button icon: ﬁ|| Select i Default
Hotkey: [F3 B B

| 1
Ok | Cancel Help ‘

The Image Capture Tool has these settings:

* Button Text: Text label for the Image Capture button.
» Tooltip Text: Tooltip text displayed on mouseover.

* Button Icon: Icon used for the Image Capture button.
Maps and Boards: Map Options

* Hotkey: Keyboard shortcut for the button.

Last Move Highlighter

A Last Move Highlighter draws a colored border around the last piece to have been moved, added,
or deleted in a logfile or by an opponent during live play. Clicking on the map clears the highlight.

The Last Move Highlighter has these settings:

* Enabled: Enabled by default. If selected, the highlighter is in effect for the last piece to be
moved, added, or deleted from a logfile and live play.

e Color: Color of the border shown.

» Thickness: Border thickness, in pixels.

Last Move Highlighter E|

[¥] Enabled?

olor: I Select

hickness: |2 7
| Ok | Cancel I Help |

Line of Sight Thread

A Line of Sight Thread adds a button to the Toolbar of the Map Window. Clicking the button will
enable a player to drag the mouse cursor between any two points in the Map Window, drawing a
line between those two points to indicate line of sight or range.

The Line of Sight Thread has these settings:

* Button Text: The label on the button in the Map Window Toolbar.

40

* Tooltip Text: Tooltip text for the button in the Map Window Toolbar.
* Button Icon: Icon for the button in the Map Window Toolbar.
* Hotkey: Specifies a keyboard shortcut for the button.

* Report Format: A Message Format that specifies the report to the chat window when the LOS
button is used. If blank, no report is sent to the chat window when drawing a thread.

» Persistence: Select one of the following for the persistence of the LOS thread.

0. Ctrl-Click & Drag: The thread will only persist when the drawing player holds down Ctrl-Click
and draws the thread.

0. Never: The thread will only persist as long as the drawing player0Us finger is on the mouse
button.
0. _Always: The thread will persist on the board until a new thread is drawn.

= Button Icon When LOS Persisting: The button icon shown when the LOS thread is
persisting, in the circumstances defined under Persistence.

= Visible to Opponent: Select whether a drawn thread will
be visible to the opponent: When Persisting, Never, Always.
» Force Start of Thread to Snap to Grid: If selected, and a Grid is defined for the map, the thread

will always begin in the center of a Grid cell.

* Force End of Thread to Snap to Grid: If selected, and a Grid is defined for the map, the thread
will always end in the center of a Grid cell.

* Draw Range: If selected, draws the range between the two points, in hexes or squares, as
appropriate for the board in use.

* Pixels Per Range Unit: If drawing the range on a board without a Grid, this determines how
many pixels on the screen equal a single unit of range.

* Round Fractions: For distances that are a fraction of a range unit, specify whether to round
fractions up, down, or to the nearest whole number.

* Hide Pieces While Drawing: If selected, then all Game Pieces in the map will be hidden (or

transparent) while the thread is being drawn.

B Line of Sight Thread
Button text: |Line of Sight

ooltip text: [Show LOS Thread

| select | Defaun |
Report Format: |$p\ayer51de$ Checks LOS from $FrumLucal|unfE1‘ i
Persistence: |Ctri-Click & Drag =]
Button Icon when LOS persisting: | Select Defautt I
isible to Opponent: {wman Persisting | -

[¥] Force start of thread to snap to grid?
[¥] Force end of thread to snap to grid?
|v| Draw Range?

Pixels per range unit (0 to use Grid calculation): |D |
Found fractions: Ineaest whole number =

|| Hide Pieces while drawing?

lOpacity of hidden pieces (0-100%): [30 |

Threadcolot:l Select |

| ok | Cancel i Help |

41

* Opacity Of Hidden Pieces: Set the transparency of Game Pieces, as a percentage of original

opacity, while the thread is being drawn. 0 is completely invisible, 100 is completely opaque.

* Thread Color: Specifies the color the thread on the screen. If set to null (by clicking the Select

button and then the Cancel button in the color-choosing dialog), then a Preferences option will
determine the color of the thread at game time.

Map Shading

The Map Shading option applies a semi-transparent solid color or image tiling to the Map. In
background mode, Map Shading can be used to overlay a repeating image over solid-color boards.
In foreground mode, the area is determined by the pieces on the map that name this Map Shading
in an Area of Effect Trait.

The Map Shading option has these settings:

42

Name: A short name of this shading for reference by pieces with the Area of Effect Trait.

Shading Always On: If selected, then the shading is always drawn. If not selected, then visibility
is controlled by a button in the Map Window Toolbar.

Shading Starts Turned On: If selected, then the shading will begin visible when a game is
loaded.

Button Text: Text for the Toolbar button.
Button Icon: Icon for the Toolbar button.
Hotkey: Keyboard shortcut for the Toolbar button.

All Boards In Map Get Shaded: Allows you to select which Boards in the map to apply the
shading to.

Type: If set to Background then the shaded area includes the entire board, minus the areas
attached to any Area of Effect Traits. If set to Foreground, then the shaded area includes only the
areas attached to Area of Effect Traits.

Draw Shade On Top Of Counters: If selected, then the shading will be drawn over any counters
on the map. Otherwise, it will be drawn underneath all counters.

Shade Pattern: Choose between 100/75/50/25% hatch patterns, or choose a custom image.
Color: The color of the shading (if not using a custom image).
Opacity: The opacity of the shading. 0 is invisible, 100 is completely opaque.

Border: If selected, will draw a border around the shading area. You can specify the thickness,
color, and opacity of the border.

B shading X]
Name: [Shading |
[_] Shading Always On?

[] Shading Starts turned on?

Button text: [Shade

IToottip Text: [Shading

Button lcon:

Hotkey: | |

r[lll hoards in map get Shaded? |Yes | b 4
ype: |Backgrnund | - |

[| Draw Shade on top of Counters?
Shade Pattern: [25% |~
Color: I Select |
Opacity(%)[50
Border?
Border Color: F Select
Border Width: |1
Border npacﬂn%}h 1]
| Ok | Cancel | Help |

Mouseover Stack Viewer

A Mouseover Stack Viewer displays the contents of a stack when a mouse cursor is moved over it,
after a specified delay. The Viewer can also display descriptive text about the pieces in the stack.
(Note that a OstackD can consist of a single piece or multiple pieces.)

The option has these settings:

* Recommended Delay Before Display: When the mouse has been stationary for this many
milliseconds, the viewer will appear. (Individual users can override this by choosing a setting in
Preferences. See the VASSAL Userls Guide for more information on setting Preferences.)

* Keyboard Shortcut to Display: Players may display the viewer without waiting by typing this
keyboard shortcut. This can be disabled in the preferences.

* Background Color: Pieces and text are drawn against a background of this color.
* Border/Text Color: Color of any text drawn, and the border around the overall viewer.

* Display When At Least This Many Pieces Will Be Included: Minimum number of units in a
stack that will trigger the viewer. You can set this to 1 to view individual pieces. If set to 0, then
the viewer will display even if the location is empty.

* Always Display When Zoom Level Is Less Than: Regardless of the above Display When At
Least This Many... setting, the viewer will also display when the map’s Zoom level is less than
this number.

* Draw Pieces: If selected, then the stacked pieces will be depicted in the viewer.

* Draw Pieces Using Zoom Factor: The magnification factor to use to draw the pieces in the
viewer.

* Width Of Gap Between Pieces: Empty space in pixels to place between each drawn piece.

* Display Text: If selected, then the viewer will show summary text and some individualized text
for each piece. If selected, specify each of these values:

o. Font Size: Size of the text shown in the viewer.

43

o. _ Summary Text Above Pieces: A Message Format specifying the text to display above the
drawn pieces in the viewer. By default, this is set to $LocationName$. In addition to
standard Properties, you can include a Property with the name $sum(PropertyName)$
where (PropertyName) is a Property defined on a Game Piece. The numeric values of this
Property for all included pieces will be substituted.

Text Below Each Piece: A Message Format specifying the text to display below each
included piece.

Include Individual Pieces: Specifies how pieces are to be selected for inclusion in the
viewer. You may restrict the pieces according to the Game Piece Layer that they belong.
Alternatively, you may specify the value of a Property.

Include Non-Stacking Pieces: If selected, then non-stacking pieces are eligible for
inclusion in the viewer.

Show Pieces In Unrotated State: If selected, then pieces that can rotate are drawn in
the mouseover as they look when not rotated.

Include Top Piece In Deck: If selected, then the top piece of a Deck will be shown in the
Viewer.

O0Offboard0 Pieces

By default, a Mouseover Stack Viewer will display each stack showing the value of each piecels
current location above each piece. If no Grid is defined for the map, the pieces will be shown as
Ooffboardl.

To change the display of the word Doffboardl, do one of the following:

* Add a Grid to the map. The Viewer will display the stackOs current location.

* In the Mouseover Stack Viewer dialog, select Display Text. In Summary Text Above Pieces,
delete the Property name $LocationName$.

» As above, but instead of $LocationName$, substitute the name of a different Game Piece
Property to be displayed.

Showing the Number of Items in a Stack

You can set a Stack Viewer to show the number of items contained in a stack.

1. Set a Marker Trait on all units you want to count. Name the Marker Trait UnitCount, and set the
Value to 1.

2. Create a Stack Viewer for the Map Window. In Summary Text Above Pieces, select
$sum(PropertyName)$. In the box, replace PropertyName with UnitCount (so it shows
$sum(UnitCount)$). On mouseover, the Viewer will now display the total Unit Count of all pieces
in the stack.

44

Informing a GamePiece it is currently being drawn in the Mouseover Stack
Viewer

Occasionally pieces will want to "draw themselves differently” inside of a Mouseover Stack Viewer.
For this purpose they can check the property DrawingMouseover in e.g. a Calculated Property or a
Label’s "Follows Expression Value" field. Alternatively the property DrawingMouseoverIndex will
contain 2 while drawing the mouseover, 1 otherwise; this can be useful as an index for a Follows
Expression layer because it avoids the substantial performance cost of a full Beanshell expression
e.g. { DrawingMouseover 7 2 : 1 }.

Multiple Stack Viewers

A Map Window can have any number of Stack Viewers, each with its own settings. You can use
different Stack Viewers to view pieces of different types, on different Game Piece Layers, or with
different attributes, and display them in different ways.

For example, a playerJs Map Window contains a stack of game pieces, as well as a stack of game
money. To prevent them being stacked together, each of these piece types is assigned to a different
Game Piece Layer. In addition, the money pieces each include a Marker Trait, Value, containing the
value of the given piece.

* One viewer is set to display the game pieces, and has Draw Pieces enabled, with each piecels
Basic Name displayed in a small label below. For Include Individual Pieces, from layers other
than those listed is selected, and Money is entered. This viewer will now show any stack not on
the Money layer, and display all the pieces in the stack.

* The second viewer has Draw Pieces disabled. In Summary Text Above Pieces, the setting
$sum(Value)$ is entered. For Include Individual Pieces, from listed layers is selected, and
Money is entered. Now, when mousing over a stack of money, the total value of the money stack,
but not the money pieces themselves, will be displayed.

Overview Window

The Overview Window adds a separate window that will be displayed whenever the main Map
Window is displayed. The additional window will contain a view of the entire playing area at a
smaller scale than displayed in the main Map Window. The area of the map currently visible in the
Map Window is highlighted in the overview map with a colored rectangle. A player may click on
the Overview window to center the Map Window at the point clicked on.

B Overview Window

ooltip texts how/Hide overview window
Button text|Map Overview]

Buttonicon [-Selecl Default

Hotkey to show/hide|CTRL SHIFT O

fscate factor|n 19444444 _}_
\Visible rectangle highlight color| Select

0k Cancel Help

The scale of the overview window relative to the Map Window can be specified in the Scale Factor
Property. You may also specify the color of the rectangle indicating the area visible in the main Map

45

Window.
The option has these settings:

* Tooltip Text: Tooltip shown when the cursor hovers over the button.

Button Text: Overview window button text.

Button Icon: Overview window button icon.

Hotkey to Show/Hide: Keyboard shortcut to toggle Overview window.

Scale Factor: Size of the Overview window compared to the current map view. For example, if
the Scale Factor is 0.2, then the Overview window will show the full-scale map image at 20%
size.

Visible Rectangle Highlight Color: Color of the rectangle shown around the overview.

Re-center Pieces Button

2 Recenter Pieces Button lz|
Button text: |Recenter |
Tooltip text: Icenlerali pieces |

Button icon: [ﬂ \ Select] Default
Hotkey: [F3] |
I Ok l Cancel I Help]

A Re-Center Pieces button adds a button to the Map Window Toolbar button, appearing on the Main
Controls toolbar, which will shift the position of all pieces on the map such that they are centered
on the middle of the map as much as possible. This is useful for games where there are no absolute
terrain features, such as many air, naval, and space combat games.

The option has these settings:

Button Text: Text label for the button.

Tooltip Text: Tooltip text displayed on mouseover.

Button Icon: Icon used for the button.

Hotkey: Keyboard shortcut for the button.
Because the size and layout of grids may vary widely, the Re-Center Pieces button may not place pieces

exactly in the center of some grids, and some manual adjustment by players may be needed after Ore-
centeringl.

Stacking Options

Stacking Options determine how stacking is handled in this Map Window. The option may not be
deleted.

46

Stacking options

[] Disable stacking?

Horizontal separation when expanded: |25
ertical separation when expanded: |25

Horizontal separation when not expanded: |12
Wertical separation when not expanded: |12

{Color of pieces when not expanded: Séled

| Ok | Cancel | Help |

» Disable Stacking: If selected, then pieces will never form stacks in this window.

* Horizontal Separation When Expanded: The distance in pixels from the left edge (right edge if
negative) of a Game Piece in a stack to the edge of the piece above it when the stack is
expanded.

» Vertical Separation When Expanded: The distance in pixels from the bottom edge (top edge if
negative) of a Game Piece in a stack to the edge of the piece above it when the stack is
expanded.

* Horizontal Separation When Not Expanded: The distance in pixels from the left edge (right
edge if negative) of a Game Piece in a stack to the edge of the piece above it when the stack is
compact.

* Vertical Separation When Not Expanded: The distance in pixels from the bottom edge (top
edge if negative) of a Game Piece in a stack to the edge of the piece above it when the stack is
compact.

* Color Of Pieces When Not Expanded: If set, then pieces below the top piece in a compact stack
will be drawn as plain squares of this color and a black border. If not set (click Select and
cancel the color-selection dialog) then pieces will be drawn normally.

Text Capture Tool

Button text: Actions
[Tooltip Text: |Displays Action Options

Button Icon: Select

Hotkey: 'i
Menu Entries

B Actions @
|
|

Remove Info Counters
Add | Remove I Insert | Un-Disrupt

| Ok | Cancel I Help

The Text Capture Tool adds a button to the Map Window Toolbar. Clicking the button will write a
plain text summary of the contents of the map to a file, using the names assigned to the counters
and the appropriate numbering of the board’s Grid.

The option has these settings:

* Button Text: Text label for the Text Capture button.
» Tooltip Text: Tooltip text displayed on mouseover.
* Button Icon: Icon used for the Text Capture button.

* Hotkey: Keyboard shortcut for the button.

47

Toolbar Menu

The Toolbar Menu component enables you to group buttons from the Toolbar of the Main Controls
window or a Map window into a drop-down menu on the Toolbar. Each button named in this
component will be removed from the Toolbar and instead appear as a menu item in the drop-down
menu.

* Button Text: The text of the button to be added to the Toolbar. Clicking the button will reveal
the drop-down menu.

e Button Icon: Icon for the Toolbar button.

Hotkey: Keyboard shortcut for revealing the drop-down menu.

Menu Entries: Enter the text of the buttons that you wish to move to the drop-down menu. The
menu item will have the same text. If the button uses an icon, the menu item will also use it.

Zoom Capability

Zoom capability enables re-scaling of a Board. You can add up to 3 buttons, for Zoom In, Zoom Out,
and Zoom Select.

Zoom levels are defined as decimal numbers, each corresponding to a percentage of the full-scale
map. For example, a 1000-pixel wide map, viewed at a Zoom level of .25 (25%), would appear to be
250 pixels across.

You can define an initial Zoom level. By default, this is 1.0 (which corresponds to a magnification
factor of 100%), but you can select a different value. Zoom is defined in additional Zoom levels,
which by default are defined at .39 (39%), .625 (62.5%), 1.0, and 1.6 (160%). However, you may add
new levels to the list, or remove the defaults.

¢ Clicking the Zoom In button moves the current Zoom factor up the list of Zoom levels, from the
initial value to higher values, making the map larger.

* Clicking the Zoom Out button moves the current Zoom factor down the list of Zoom levels, from
the initial value to lower values, making the map smaller.

* Clicking Zoom Select enables the user to simply select a Zoom level from the defined levels.
The option has these settings:

* Preset Zoom Levels: A set of preset Zoom levels is listed. Each is identified by its scaling factor.
For example, a Zoom level of .625 will show the board at 62.5% actual size. (A 1000 pixel-wide
board would appear as 625 pixels across.) You can add a new level by entering a scaling factor
in the text box and clicking Add. To remove a pre-set level, select it from the list and click
Remove. To set the initial Zoom level (the one players see at game start), select the desired level
and click Set Initial. The initial level will be marked with an asterisk (*).

Zoom In/Out/Select Tooltip Text: Tooltip text for the button.

Zoom In/Out/Select Button Text: Text label for the Zoom button.

Zoom In/Out/Select Icon: Icon used for the Zoom button.

48

* Zoom In/Out/Select Hotkey: Keyboard shortcut used for the Zoom button.

Since the Zoom In and Zoom Out button functions are both duplicated b the Zoom Select button,
you may wish to omit these buttons. To omit a particular Zoom button from the Map Toolbar, leave
the text label and tooltip for the button blank. Then, next to the Icon for the button you do not wish
to include, click Select, and then click Cancel. The button will not be displayed.

For example, to exclude the Zoom In button, next to Zoom In Icon, click Select, and then click
Cancel. No Zoom In button will be included.

Map Grids

Map Grids help regulate movement and piece location. You can add one of the following types of
Grid to a board: Hex, Rectangular, Irregular, and Multi-zoned.

Use of a Map Grid is optional. Although VASSAL Map Grids can help keep piece placement and
movement tidy, hex and rectangular Grids in VASSAL are really most useful at the tactical scale,
where range between hexes or squares may a factor in gameplay, and a Line of Sight Thread is used
to track distances. For other games, such as those at the strategic scale, the printed grid included in
the map image is often all that is necessary.

If you choose add a map grid to a board, each board in the same map window must have its own
Grid, and each board may only have one grid (exception: see Multi-Zoned Grids, below.)

Like other components, map Grids can be copied and pasted from one Board to another.

By default, if a hex or rectangular Grid is imposed, pieces will snap to them, in which case all pieces
will align neatly with the Grid cells. You can also enable snap for Irregular grids.

To turn off snap, choose cell edges or vertices as legal locations. (You can also have some pieces
ignore snap by assigning them the Does Not Stack Trait. See page 46 for more information.)

Hex Grid

A Hex Grid is a standard hexagonal Grid for regulating movement on a Board. This type of Grid has
these options:

[_] Sideways (hexrows go horizontal)?
b ottset: (70
I offset: |28
Hex Height: iﬁr] :] -
Hex Width: |146.15828323057013
[¥] Edges are legal locations?
[vertices are legal locations?
[¥] Show grid?
|| Draw center dats?
[Color: I Select 7
e Edit Grid
| ok | canca | mew |

» Sideways: Check this box to make the hex rows of the Grid run right-to-left instead of top-to-
bottom. (Setting the Grid to be Sideways switches the meanings of horizontal/vertical and x/y
below.)

49

* X,Y offset: The horizontal and vertical position of the center of the first hex of the Grid.

* Hex Height/Width: In pixels from hex center to hex center. If you specify only the height, the
width will adjust, or you can create oblong hexes by also specifying a width

» Edges/Vertices are Legal Locations: If selected, pieces can be placed on cell edges or corners,
instead of only at hex centers.

* Show Grid: If selected, then the Grid will be drawn over the Board image using the specified
color.

* Draw Center Dots: If selected, a dot will be drawn at the center of each hex in the specified
color. You can add numbering to this type of Grid; see Grid Numbering on page 34.

Rectangular Grid

A standard rectangular Grid for regulating movement on a Board. This type of Grid has these
options:

* X,Y offset: The horizontal and vertical position of the center of the first cell of the Grid.
* Hex Height/Width: in pixels of a single cell.

* Edges/Corners are Legal Locations: If selected, pieces can be placed on cell edges or corners,
instead of only at cell centers.

» Show Grid: If selected, then the Grid will be drawn over the Board image using the specified
color.

* Draw Center Dots: If selected, a dot will be drawn at the center of each cell in the specified
color.

Rectangular Grid g
X offset: |24

i offset: |24

Coll Width: 281

Cell Height: [42.0 =
Range Calculation Method: |Manhattan ~

Edges are legal locations?

[Corners are legal locations?
v Show Grid?

|¥| Draw Center Dots?

Color: I Select |

Edit Grid |
ok | concel | Hep |

You can add numbering to this type of Grid; see Grid Numbering on page 34.

Irregular Grid

An irregular Grid is used for area-based games. It enables you to define a set of named Regions at
arbitrary locations. These named Regions will act like the cell center points on hex or rectangular
Grids. Pieces can be made to snap to the nearest named point, and their location will be reported as
the nearest named point.

For maps with very irregularly shaped areas, you may need to specify more than one Region point
in each area, each with the same name.

This type of Grid has these options:

50

* Snap to Defined Point: If selected, a Game Piece moved on the board will snap to the nearest
defined Grid point.

* Draw Region names: If selected, the names of the Regions will be drawn on the map.
* Font Size: The font size used to draw the names.

* Define Regions: Click to display a window for defining the Regions. To add a new Region, right-
click anywhere on the board and pick Add Region. To remove a Region, right-click on an
existing Region’s name and pick Delete Region. To change a Region[ls name or relocate it, click
Properties, and then enter the new values.

B regular Grid

[v] Snap to defined point?
|¥] Draw region names?,
ont Size: |9
Define Regions

e e e

Multi-Zoned Grid

A multi-zoned Grid enables you to define any number of areas on a board. Each area, called a Zone,
can have its own Grid type and naming format, which takes precedence over the default Grid. For
example, a board with a hex Grid may have zones along the edge for a turn track or force pools.
Pieces will snap to positions in the appropriate Zone and auto-reporting will use text supplied by
the zone.

B Combat Zone

Name: (CombatZone |

ji_ocation Format: \jsq.rmL.th-:nf]
Define Shape i R

|| Use board's grid?

[] Use Highlighting?

‘ Ok Cancel

Use of a multi-Zoned Grid is not recommended for a map with many Zones.
This type of Grid has these options:

* Zone: Each zone can have an arbitrary shape, which you specify in the Define Shape dialog.
Each zone may define its own Grid. When defining a zone’s Grid, the offsets and numbering are
relative to the edge of the overall board, not the zone’s edge.

« Name: The name of the Zone.

* Location Format: A Message Format that will be used to define the location of a point for auto-
reporting of moves: name is the name of this Zone, GridLocation is the location name according
to this zone’s Grid.

* Define Shape: Hit this button to bring up a dialog for defining the shape of this zone. To create
the initial shape, drag the mouse to define a rectangle. Then right-click to add new points and
use the mouse to drag points to their final locations. Delete a point by clicking on it and pressing
the Delete key.

» Use Board’s Grid: If selected, then this Zone will use the Grid from the containing board instead
of defining its own Grid.

» Use Highlighting: If selected, you must also specify the name of a Property. The value of the

31

Property will determine which Zone Highlighter is used to draw the zone.

* Zone Highlighter: Any number of Zone Highlighters can be added to a Multi-Zone Grid. Any
Zone whose highlighting Property matches the name of a Zone Highlighter will be drawn with
that highlighter, which overlays a colored pattern over the shape of the Zone.

* Name: The name of the highlighter.
* Color: The color of the highlight.

* Coverage: Select Entire Zone to overlay the entire shape of the zone. Select Zone Border to
overlay only the border of the Zone.

* Style: Select from solid color, striped diagonal lines, crosshatched diagonal lines, or an image
that you specify.
* Opacity: Select the transparency of the overlaid color or image.

B Axis X

Name: |Axis |

IColor: I Select |
Coverage: |Entire Zone -
Style: _Cmsshatched le

Opacityt%):

c {)
Transparent Opaque
| ok | cancel | Help |

If a given point does not fall within any of the defines Zones for a Multi- zone Grid, the default Grid
is used. The default Grid may be any of the usual types of Grid: hex, rectangular or irregular.
Zone Highlighters

Any number of Zone Highlighters can be added to a Multi-Zone Grid. Any Zone whose highlighting
property matches the name of a Zone Highlighter will be drawn with that highlighter, which
overlays a colored pattern over the shape of the Zone.

» Name: The name of the highlighter.

Color: The color of the highlight.

* Coverage: Select Entire Zone to overlay the entire shape of the zone. Select Zone Border to
overlay only the border of the Zone.

Style: Select from solid color, striped diagonal lines, crosshatched diagonal lines, or an image
that you specify.

Opacity: Select the transparency of the overlaid color or image.

Zone Properties

A Zone may contain Global Properties. Zone Properties may not have a Change-Property Toolbar
button, but can be modified by a Set Global Property Game Piece Trait.

To assign a Global Property to a Zone,

1. Right-click the Zone and pick Add Global Property.
2. In the Global Property dialog, enter name and other settings for the Property.
3. Click Ok.

For more about Global Properties, see page 88.
Adding Different Grid Settings to a Board

Multiple Grids can be added to a Board using Zones. Grids are added at the Board level, not the Map
level, and so need to be set on each Board that makes up your map. Follow this procedure for each
Board:

1. First create a board with a Multi-zoned Grid.

2. Create a standard Hex, Rectangular or Irregular Grid that covers most of the board. This is the
'default’ or 'background' Grid that will be used for all areas of the Map not covered by a Zone.

3. For each area of the Board that is to have a different Grid, create a Zone. Don’t click the Use
Board’s Grid button, as this will force the Zone to use the Grid you specified in step 2.

4. Right-click on the newly created Zone and you can now add a Hex, Rectangular or Irregular
Grid that will apply only within that Zone.

5. If Zones overlap at a given point, the Zone defined first in the module (that is, topmost in the
Module Editor) will take precedence at that point.

rder: |Horlzontal first hd|

Horizontal numbering: |N|mencal |v
i inherizontak: -3
Horizontal numbering descending?
\ertical numbering: Mumerical IE3
|

) eading zeros invertical: 0
iStarting number invertical -2

__ Vertical numbering descending?
b ocation format: [SaricLocations

¥ Draw Numbering?
Font size: |9
iColor: Select

Rotate text (Degrees): (0 =
[Taxt X offset: |0
fText ¥ offset: |

%] Odd-numbered rows numbered higher?

| Ok Cancel Help |

Grid Numbering

You can add Grid numbering to any hex or rectangular Grid. (Numbering is not applicable to the
other Grid types.)

* Order: Label cells by row/column vs. column/row

33

Separator: Text to place between the row and column, such as a comma
Numbering: Alphabetical (A, B, C, ... AA, BB, CC, etc.) vs. numerical (1,2,3...)

Descending: If selected, numbering of rows and columns begins on the bottom right edge of the
board.

Leading Zeros: Number of leading zeroes in each row or column

number. One leading zero means to always use two digits for the row/column. Two leading zeros
mean always use three digits, and so on.

Starting Number: The number of the first cell (A’ == 0 if using alphabetic numbering).

Location Format: The Message Format for reporting locations within a Map Window (for
example, for move reporting): GridLocation is the name as drawn on the sample Grid. This is
useful for pre-pending a board name, for example.

Draw Numbering: If selected, the numbering of the Grid will be drawn on top of the board
image.

Font size: Size of the font to use when drawing the numbering.
Color: Color to use when drawing the numbering.
Rotate Text: Orientation of the numbering text.

Text X Offset: Distance in pixels to the right (relative to the text’s orientation) of its default
position that the text will be drawn. By default, text is center-justified at the top of the cell.

Text Y Offset: Distance in pixels downward (relative to the text’s orientation) of its default
position that the text will be drawn. By default, text is center-justified at the top of the cell.

Odd-Numbered Rows Numbered Higher: For hex Grids only. If selected, then the first number
of staggered columns on the Grid will be one greater than non-staggered columns.

Adding a Grid to a Board

To add a Grid to a board,

SR

Select the [Map Window] node that contains the board.

Select the [Board] node.

Right-click the node and pick the type of Grid you would like to add from the list of commands.
In the dialog, configure the Grid as desired.

Click Ok.

To add Grid numbering to a hex or rectangular Grid,

1.
2.
3.
4.

54

Select the [Board] node that contains the hex or rectangular Grid.
Right-click the node and pick Add Grid Numbering.
In the Grid Numbering dialog, configure the Grid numbering as desired.

Click Ok.

Aligning a Map Grid with a Printed Grid

Some game board images already include a printed hexagonal or rectangular Grid. Of course, your
module Grid should align with the printed Grid as closely as possible. The Module Editor has a
number of tools to help you align a Grid.

For better appearance, make a Map Grid invisible (Draw Grid is de-selected) if the Grid is already
drawn on the printed map image.

To align a hex or rectangular Grid with a printed Grid,

1

SR

8.

In the Module Editor, right-click the [Hex Grid] or [Rectangular Grid] node you wish to edit,
and select Properties.

On the dialog, select Draw Grid and Draw Center Dots.
In Color, select a highly visible color.

Click Edit Grid.

On the Edit Grid dialog,

o Use your arrow keys to shift the offset of the Grid. (Hold Shift down to increase the speed of
the Grid movement.)

o To resize the cells, use these keys: Ctrl-Down Arrow to increase the vertical cell dimensions.
Ctrl-Up Arrow to decrease the vertical cell dimension. Ctrl-Right Arrow to increase the
horizontal cell dimension. Ctrl-Left Arrow to decrease the horizontal cell dimension.

When the Grid aligns with the printed Grid, click Save.

Deselect the Draw Grid and Draw Center Dots checkboxes, so the VASSAL-imposed Grid is
invisible.

Click Ok.

Guidelines for Grid Alignment

Aligning a Grid component with a printed map Grid can be tricky, particularly for hexagonal Grids.
Follow these guidelines to help ensure an accurate Grid placement.

* Make the Grid and center dots a highly visible color when working on a Grid. (You can turn off

the Draw Grid setting later, when you finalize the board.)

* Try to align the grid in the upper left-hand corner of the map. Then, move to the lower right-

hand portion of the map. Align this, and then re-check the upper left-hand corner again. This
will show you how much you might have to deviate from a perfect alignment to have pieces
generally centered throughout the map, if both corners do not align exactly.

 Work on one axis a time:

0. Adjust the cell height first. Change the cell height slowly with the Ctrl-Up/Down Arrow keys until

the Grid hexes are approximately the same height as the map hexes. Then, using the Up/Down
Arrow Kkeys, adjust the vertical offset to align them better. Fine-tune the cell height and cell
placement.

55

0. Now, leaving cell height unchanged, work on cell width in the same way, using the Ctrl-
Left/Right Arrow and Left/Right Arrow keys. Fine-tune the cell width and cell placement. Adjust
the Hex width until you get a repeating pattern showing the hexes are about the same size.

The key for successful alignment to always adjust the cell height and vertical offset first, and get
that right before working with the width and horizontal offset.

36

Sides

Sides represent different players in the game. Defining Sides in a module is optional.

* If you define no module Sides, then all windows and all Game Pieces are visible and accessible
to all players.

* However, if you wish to create components that are accessible only to one player in a game
(such as Private Windows), then you must define player Sides. Sides are used for Private
Windows, Player Hands, and the Game Piece Traits Mask, Invisible, and Restricted Access. If
these components or Traits are not used in your game, then defining Sides may not be necessary
for your game.

Organizing Sides

You can create these types of Sides. (Note that these types are not specified in a module by name,
but are a way of organizing Sides conceptually, for the players.)

 Single: With a single Side, each player represents a single group in the game. For example, in a
World War II game, the German Side can control German units, but no others.

* Compound: With a compound Side, each player may represent more than one group in the
game. Compound Sides could be mixed with single Sides for large multiplayer games that might
sometimes be played by few players. For example, in a World War II game, the Axis Side can
control both German and Japanese units, and the Allies would take the remaining forces. These
two Sides are intended for a game where there are only two players. If the same game were
played by 4 players, the players would be expected to select either the German, Japanese,
American, Russian and British Sides, so in addition to Axis Side and Allies Side, there are also
German, Japanese, USA, Russia and UK as Sides.

 Solitaire: A Solitaire Side can access all pieces and boards, to make it easier for solo players to
play the game. Since a Solitaire Side can access any game components, there is no need to click
Retire at the end of each turn to switch Sides and grant access. Inclusion of a Solitaire Side can
be a useful way to play games that are played both solo and multiplayer.

* Referee: A Referee or Master Side is created like a Solitaire Side, but has access to anything that
can be accessed by other players. In addition, a referee may have Private Windows or Game
Pieces that only the referee can use.

Retiring from a Side

A Player can relinquish a current Side by clicking the Retire button on the Main Controls Toolbar.
The button is configurable with these settings:

* Button Text: Text of the Retire button.
* Button Tooltip: Tooltip shown on mouseover for the Retire button.

e Button Icon: Icon used for the Retire button.
Adding Sides to the Module

Sides can be named anything you choose, and should reflect the groups or forces in the physical

57

game. They can be named for the color of the units, their nationality, or be simply numbered Player
1, Player 2, and so on. Each Side must have a unique name.

A module may have any number of Sides defined.

All module Sides will appear in the drop-down list offered to players at game start, even if some of
them are not used in a particular scenario. There is no way to suppress the display of some Sides from
this drop-down.

In addition, each side must have a unique password, which is chosen by the player who plays the
Side at game time. The privacy of a Side is ensured by player passwords. Only one player may join a
Side. If one Side is taken, when joining a game, players will be prompted to take one of the
remaining available Sides.

See the VASSAL User0Us Guide for more information about Sides and passwords.
To add to the list of available Sides,

1. In the Configuration Window, right-click the [Definition of Player Sides] node, and choose
Properties.

2. In the Definition of Player Sides dialog, under Sides Available to Players, enter the name of a
Side and click Add. The Side is added to the list.

3. Repeat Step 2 for each additional Side.

4. Specify text, tooltip and icon for the Retire button.

5. Click Ok.

When the game begins, the Sides are presented for player selection in the order you specify.

Observer Side

The Observer Side is included by default in all modules, and may not be deleted. As the name
implies, the Observer can watch a game, but will not have access to any Side-restricted components.
A game may have any number of Observers logged in at the same time.

The Observer Side is also important when creating Pre-Defined Setups. See page 97 for more
information.

Next Steps: Restricting Components By Side

The process of creating Sides merely makes a list of available Sides for the players to choose from.
To restrict components to one or more of these sides, you must now configure Side access for
individual components, such as with Private Windows or Player Hands (see Maps and Boards on
page 20) or using the Restricted Access, Mask, or Invisible Traits on Game Pieces (see Trait
Descriptions beginning on page 42).

Sides assigned to restricted components must match one or more existing Sides exactly as it is
spelled in the List of Available Sides. For example, if you restrict pieces in the World War II game to

38

the “UK” Side, then listing “U.K.” as a Side for each component will not correctly grant access. Side
names are also case-sensitive.

39

Game Pieces

Game Pieces are what you move around on the map in order to play the game. In some games,
pieces are known as units, counters, or tokens. Pieces can include ordinary Game Pieces, cards,
game money, movement tokens, markers, and even map tiles.

Game Piece Palette

A Game Piece Palette is a tool for generating and organizing Game Pieces. During the game, players
draw pieces from one or more palettes and place them on the map. There is no limit to the number
of pieces that can be generated by a Game Piece Palette. Pieces will appear in the palette in the
order they are listed in the Configuration Window.

MName: |Parts |

[¥] Hidden? (requires restart)
[Button text: |Parts |
Tooltip text: ‘Shnw.lede the Parts window |

Button icon: | Select | Default

Hotkey to show/hide: [-FW 2

|
| Ok I Cancel I Help ‘

Each Game Piece Palette has these attributes:

* Name: If the palette appears in its own window, this will be used for the title.

» Hidden: If selected, then this Game Piece Palette will not appear at all during play. This is useful
if you need to define pieces for a default Setup but don’t want to allow players to create new
pieces during play. You must restart VASSAL for this change to take effect in the Module Editor.

¢ Button Text: The text on the Toolbar button that shows and hides the Game Piece Palette.
* Button Icon: The icon image on the Toolbar button.

* Hotkey to Show/Hide: A keyboard shortcut for the Toolbar button. Toggles visibility of the
Palette.

An infinite number of Pieces can be drawn from a Game Piece Palette. However, some
games have a limited number of pieces available on purpose. Too many pieces may
actually affect the game 0Os balance and playability. In such games, your module
should have the same limitations as the actual game. If the quantity of a Game
Piece is limited in a game, itls probably better to use At-Start Stacks than a Game
Piece Palette. See page 24 for more information.

Palette Sub-Components

A Game Piece Palette is highly configurable, and can contain any combination of tabs, lists, and
pull-down menus containing individual Game Pieces. For example, a Scrollable List could include a
Panel, which includes individual Game Pieces.

» Tabbed Panel: A panel with tabs, each of which corresponds to a Panel or other Tabbed Panel

60

subcomponent. The label of the tab will be the name of the subcomponent.

* Panel: A panel that can contain Single Pieces, Tabbed Panes, or other panels. Select Fixed Cell
Size to specify a fixed number of columns for the panel. Otherwise, the sub-components will
appear in a single row, or a single column if the Vertical layout box is checked.

e Pull-down Menu: A pull-down menu in which each menu item corresponds to a subcomponent.
The name of the menu item will be the name of the subcomponent.

* Scrollable List: A scroll list in which each entry corresponds to a subcomponent. The name of
the entry will be the name of the subcomponent.

* Single Piece: A Game Piece that can be dragged onto a playing area. (Most Single Piece sub-
components will be part of another sub-component, grouped with similar pieces.)

By default, a new module includes an empty Game Piece Palette, but you can modify the default, or
create as many new ones as you need.

Docked Palette

By default, the first palette in the Editor (that is, at the top of the list in the Editor window) will be
displayed docked (attached) to the module main controls and Chat Window. All other palettes will
be undocked (detached).

If a player has the Use Combined Application Window preference checked, then the first
(topmost) Game Piece Palette in the Configuration Window will dock into the main controls
window to the left of the chat area. All other Palettes will appear in their own window.

To detach all palettes from the toolbar for all players, use an empty hidden palette as the first one in
the list.

*Game Pieces: Creating Game Pieces™

Creating a Game Piece Palette
To create a Game Piece Palette,

Right-click the [Module] node and select Add Game Piece Palette.
In the Game Piece Palette dialog, specify the settings for the palette.
Click Ok.

Right-click the new [Game Piece Palette] node and pick a sub-component to add.

SR

Continue adding subcomponents as needed.

After a palette is created, you can then create individual pieces.

Pre-Setting Pieces in a Game Piece Palette

Pieces in a Game Piece Palette can be pre-set in particular states based on the Traits they possess.
Whenever the pieces are drawn from the palette, they will be in the pre-set state.

For example, you would like a rotatable piece to start each game rotated 90 degrees to the right. In

61

the VASSAL Player, right-click the piece in the palette, select Rotate from the piecells Command
Menu, and rotate the piece to desired position. Now save the module. The pieces will be displayed
in the rotated state you saved, and new pieces dragged from the palette will be created rotated 90
degrees to the right.

In order to pre-set a Trait, the piece must possess the Trait directly and may not inherit it from a
Prototype. (For pre-setting Traits in a Prototype, see page 67.)

Displaying Large Pieces in the Palette

Each level of the palette allows a scale factor to be set, controlling the size that pieces are drawn.
Thus you can specify a smaller scale for palettes containing large pieces.

Creating Game Pieces

A Game Piece is defined by its Traits. Each Trait gives a Game Piece one or more kinds of
specialized behavior or attributes.

You can assign any number of Traits to your piece, to reflect its usage in the game.

By default, each piece includes the Basic Piece Trait (see page 44), which defines the name of the
piece and the basic image used. The Basic Piece Trait may not be deleted.

Trait Order

The order of Traits as they appear in the piecels Properties dialog is crucial when defining a Game
Piecels behavior. Traits are evaluated from the bottom of the list to the top. A Trait will only affect
those Traits above it in the *Properties* dialog.

For example, if you define a Rotate Trait on a Game Piece, and then a Text Label Trait below that,
when the piece is rotated, the Text Label will not rotate.

If you were to move the Text Label Trait above the Rotate Trait, then when the piece is rotated, the
Text Label would rotate along with the piece.

Trait order is often the first place to look when diagnosing a Game Piece that is not behaving the
way you intended. Always check the Trait order to determine if your Traits are being applied in the
intended sequence (that is, bottom of the list to the top).

Trait order is crucial when defining a Game Piece’s behavior. A Trait will only affect those Traits
above it in the Properties dialog.

You may get unexpected results if some Traits are not placed at the end of the list of Traits, where
they can affect all other Traits. Examples of Traits that should usually be placed at the bottom of the
Properties list include Mask, Invisible, and Restricted Access.

Using the Piece Properties Dialog

To create a Game Piece,

62

In the Module Editor, select (or create) a [Game Piece Palette] node.
Select where in the palette you want the piece to appear (in a scrollable list, a tab, etc.)
Right-click and choose Add Single Piece.

Under Current Traits, Basic Piece is selected. Click Properties.

SR

In the Basic Piece Properties dialog, do one of the following:

> Double-click the left side of the dialog, and then browse to the location of the image file you
want to use for the piece, or,

- Using the drop-down list, select an existing image file from the list of files that are already in
the module.

6. In Name, enter the basic name of the piece.

~

. Click OK. The piece is added to the palette.

You can copy and paste Traits between pieces (and Prototype Definitions). In the Properties dialog of
the first piece (or Prototype), select the Trait you want to copy, and click Copy. Open the Properties
dialog of the second piece (or Prototype), and click Paste. The Trait is copied to the where you pasted
it.

To add Traits to a Game Piece,

1. Select the Game Piece in its palette and click Properties.

2. On the Properties dialog, select a Trait from the Available Traits list, and click Add. The Trait
is moved to the Current Traits list.

Select the Trait, and then click Properties.
In the dialog, specify the settings for the Trait.

Repeat steps 2-4 until the behavior of the piece has been specified.

3.
4.
3.
6.

Click Ok.

B vp Marker

Available Traits Current Traits

Eﬂc Piece — Basic Piece

Delete E1 Delete

Clone Layer - VP Coumnt Move Up
Layer Prototype - VP p—"
Prototype | Add-> Marker - Stack = Misc Move Down
Text Label <. Remaove | Copy
Report Action 1
Trigger Action - Paste |

Help |
import | Properties

| ok | cancel | mHep |

To change the placement order of an assigned Trait,

1. In the Current Traits list, select the Trait to move.

63

2. Click Up or Down to move the Trait up or down in the list.

3. When complete, click Ok.

Traits and the Command Menu

A. Game Piecels right-click Command Menu will display Trait-related commands in reverse order
from the way they appear in the Trait list. For example, if the Clone Trait were the last Trait
defined on a Game Piece (that is, bottom-most on the Trait list), then the corresponding Clone
command would be the first one displayed in the piecells Command Menu.

o If no text label is specified for a command, then the command will not be displayed in the
menu. However, the commandUs keyboard shortcut could still be used as if the menu item
were visible. (Commands that are solely part of a Trigger Action often omit the text label, so
the commands will not appear on the menu outside of the Trigger command.)

> You may not omit the Keyboard Shortcut for a Trait (if the Trait Properties dialog prompts
for one).

For example, you define a Delete Trait on a Game Piece with a keyboard shortcut of Ctrl-X. You
leave the value of Command Name for the Trait blank. As a result, no Delete command shows up in
the Command Menu. However, the keyboard shortcut Ctrl-X could still be used in Global Key
Commands or Trigger Actions.

Keyboard Shortcuts (Hotkeys)

Pressing a commandls keyboard shortcut (hotkey) when the piece is selected will invoke the
corresponding command, just as if the menu item was selected. For example, a Move Fixed Distance
Trait could be defined to use the Ctrl-M shortcut. A player would hold down Ctrl and M
simultaneously, with the piece selected, to launch the command.

Hotkeys can also be invoked by automated commands. For example, Trigger Action Traits make use
of hotkeys when referring to a sequence of commands. In every respect, a Hotkey invoked by
automated commands will work the same as if a player had pressed the key combination on a
keyboard.

You can define any unique keyboard shortcut you want as a Hotkey for a particular command. To
make it harder to press them accidentally, keyboard shortcuts are usually comprised of more than
one key, such as Ctrl-X or Alt-Shift-K.

A keyboard shortcut could be composed of any number of keys, but generally use 2 or 3 keys;
usually a letter or number combined with one of the following keys: Ctrl, Alt/Option, Shift, or
Meta/Command.

To make them more memorable for players, when assigning keyboard shortcuts, use key
combinations that are reminiscent of the command itself. (For example, Ctrl-D would be an easily
remembered shortcut for a Delete command.)

Use these guidelines when assigning keyboard shortcuts.

» Keyboard shortcuts should be unique for a given type of piece. If not, when the shortcut is

64

invoked, more than a single command could be fired at once, with possibly unexpected results.

* Avoid using keyboard shortcuts that players could type inadvertently. For example, a single
capital letter M would not be a suitable shortcut, nor would Shift-M, because players could
easily type either in the Chat window during ordinary conversation. However, Ctrl-M or Ctrl-
Shift-M would both be suitable.

* Be careful about assigning hotkeys to keys that invoke special functions on your computer. Caps
Lock, Backspace, Delete, Home, End, Enter/Return, and so on, are not appropriate for use as
hotkeys. Similarly, the Function (F1-F9) keys at the top of a standard keyboard may serve as
hotkeys for various Windows or MacOS functions, and pressing them could cause unexpected
operating system functions to be invoked instead of the desired piece command.

Trait Descriptions

The following Traits are available for use with Game Pieces.

Action Button Movement Trail Area of Effect Non-Rectangular
Basic Piece Place Marker Can Pivot Play Sound

Can Rotate Property Sheet Clone Prototype

Delete Replace With Other Does Not Stack Report Action
Dynamic Property Restrict Commands Global Hotkey Restrict Access
Global Key Command Return to Deck Invisible Send to Location
Layer Set Global Property Mark When Moved Spreadsheet
Marker Sub-menu Mask Text Label

Action Button

Action Button places a virtual button on your piece. Clicking within the specified rectangular region
on the piece will invoke an action just as if the corresponding key command had been typed.

An Action Button Trait has these attributes:

* Invoke Key Command: The keyboard command to be invoked.

» Button X-offset: The horizontal position of the upper-left corner of the rectangle, in pixels from
the center of the piece. Negative numbers are toward the left.

* Button Y-offset: The vertical position of the upper-left corner of the rectangle, in pixels from
the center of the piece. Negative numbers are toward the top.

* Button Width: The width in pixels of the button.

» Button Height: The height in pixels of the button.

65

Description: Do Action)
Button text: [Do Action
Button Tooltip text Do Action

)
!
|
|

Button icon ‘ Select
Hotkey: |Fg |
[#] Display Message?

Report Format: Action Hit | |

|| Play a sound?

Soundt.hp:! Selact l!ada.wau

[¥] Send Holkeys?
Hot Keys:

Remove | HolkKey. [F10 |

Remove | HotKey: |F11 |

| New

| Ok I Cancel i Help

This Trait does not alter the way a Game Piece is drawn, so the Basic Piece or a Layer should be
used to supply a visual cue to the player that the button exists.

The Action Button Trait is never affected by the Can Rotate Trait (no matter where the Action
Button is placed in the Trait order).

To make a button that can be activated and deactivated, combine an Action Button with a Layer and
a Trigger Action.

Example: A Game Piece representing a spaceship has a self- destruct action that can only be activated
when the energy reaches the minimum level. A Layer named Energy is used to represent the energy
level. The image for the lowest level of the layer adds an icon for a self-destruct button. An Action
Button Trait uses the boundaries of the button icon and invokes Ctrl-ALT+T. A Trigger Action watches
for Ctrl- ALT+T and invokes the keyboard command for self-destruct when the Properties match
Energy_Level = 1.

NOTE: The Action Button Trait is not related to the Action Button module component (see
page 84).

Aligning an Action Button
Use this formula for aligning an Action Button:

* X offset = [width of piece / 2] — (X Position). Then change sign, from positive to negative, or vice
versa.

* Y offset = [height of piece / 2] — (Y Position). Then change sign, from positive to negative, or vice
versa.

For example, a 100x100 pixel game piece, with button position on the piece at 25x60 pixels, would
have these X and Y offset values:

» X-offset =100/2 =50-25 = 25. Change sign, so final X-offset value is -25.
* Y offset =100 /2 =50 - 60 =-10. Change sign, so final Y-offset value is 10.

Area of Effect

66

Area Of Effect properties

Contributed by Scott Giese (sgiese@sprintmail.com)

Description: |Area |

[_] Use Map Shading?

Fill Color: Select

Opacity (%): 30 |
Fixed Radius?

Radius: 3 |
Always visible?

The Area of Effect Trait enables you to graphically highlight an area surrounding a Game Piece. The
area is shaded with a specified color and transparency. Alternatively, you can point to a Map
Shading component, contributing to the area that it draws.

Area of Effect has these attributes:

» Use Map Shading: If selected, then the area of this Trait will be added to the area drawn by the
named Map Shading component (or subtracted from that area if it is of type Background). If not
selected, then each piece with this Trait will draw its own area, with overlapping areas shaded
darker.

* Fill Color: The color of the Area of Effect.
* Opacity: The opacity of the Area. 100% is completely opaque. 0% is completely invisible.

» Radius: Distance, in local Grid units, from the Game Piece that will be highlighted. If the piece is
on a board with a Rectangular Grid or Hex Grid, this distance is in Grid units and the shaded
area will conform to the Grid. Otherwise, it will be a circle with the given radius in pixels.

* Always Visible: If selected, the area is always highlighted when the piece is drawn on a Map.

» Toggle Visible Command: If not always visible, this is the Command Menu item to show/hide
the highlighted area.

» Toggle Visible Keyboard Shortcut: If not always visible, the keyboard shortcut to show/hide
the highlighted area.

Basic Piece

All Game Pieces have the Basic Piece Trait. The Basic Piece Trait consists of a Game Piece name and
assigned image.

Game Piece Name

A game piece name can be any alphanumeric string of text. The name can include space characters
O.

67

£

B Basic Piece properties

6 Cover*
?Name: Immobilized Sherman |
Sherman.png |
.
ok || Ccancel |

Game Piece Image

Your image can come from one of these sources:

* You can import an externally created image from outside

VASSAL (such as a scanned piece image, or image you have otherwise created).

* You can create an image using the Game Piece Image Definition component. See page 69 for
more information on Game Piece Image Definitions.

* You can use an image that already exists in the module. The image selector drop-down, found in
the Basic Piece dialog, includes an alphabetical list of every image in the module.

Alternatively, you can create a composite piece image using the Layer Trait. See page 50 for more

information.

Basic Piece System Properties

The following system Properties are defined for the Basic Piece Trait (and therefore defined for all
Game Pieces). Remember that Property names are case-sensitive.

Property

BasicName
PieceName
PlayerSide

LocationName

CurrentMap
CurrentBoard
CurrentZone
CurrentX

CurrentY

68

Description

Name of the Basic Piece Trait.

Full name of the piece, including all Traits.
Side of the current player.

Name of the current location, as determined by
the local Grid. If no Grid is assigned to the
Board, the value will be Ooffboard.0

Name of the current Map Window.
Name of the current Board.

Name of the current Zone.

The current map X coordinate.

The current map Y coordinate.

DeckName Name of the Deck, if the piece is currently
stacked in one.

Selected Boolean. Has a value of true when the piece has
been selected with the mouse.

OldLocationName Name of the previous location, as determined by
the local Grid (after the piece has been moved
by drag-and- drop movement).

OldMap Name of the previous Map Window (after the
piece has been moved by drag-and-drop
movement).

OldBoard Name of the previous Board (after the piece has

been moved by drag-and-drop movement).

OldZone Name of the previous Zone (after the piece has
been moved by drag-and-drop movement).

0Oldx Previous map X coordinate (after the piece has
been moved by drag-and-drop movement).

oldy Previous map Y coordinate (after the piece has
been moved by drag-and-drop movement).

Can Pivot

Can Pivot enables a Game Piece to pivot around a fixed point relative to its current position. A piece
with Can Pivot must also include Can Rotate, which must appear before (below) the Can Pivot Trait.
The Trait has these attributes:

* Command: The Command Menu item to pivot the piece.
* Key Command: The keyboard shortcut of the command.

» Pivot Point: The location, relative to the center of the piece and its current facing, around
which the piece will rotate. Positive numbers are down and to the right. Example: For a Game
Piece of size 40x40, a pivot point of 20,-20 will rotate the piece around its upper right corner.

* Pivot Through Fixed Angle: If selected, then invoking the command will pivot the piece
through the angle specified in the Angle field, in degrees clockwise. If left unselected, then
invoking the command will allow the player to pivot the piece interactively by any angle by
dragging the mouse.

B can Pivot properties E|
iC |Pivat Left |
Heyhoard command: ;CTRL P

Pivot point: [-30 |, |30]

|¥] Pivot through fixed angle?

Con | e |

langte: [a0.0

69

Can Rotate

Can Rotate enables a Game Piece to be rotated through an arbitrary number of facings. The Trait
has these attributes:

Description: Description of the Can Rotate Trait.

Number of Allowed Facings: You can choose the number of valid facings. For example, a hex-
based game may have six possible facings, while a game with a square Grid game might have
four (or eight, if corners are used). Each use of the command to rotate clockwise or counter-
clockwise will rotate the piece one facing.

Command to Rotate Clockwise: If specified, the keyboard shortcut to rotate clockwise, and the
accompanying menu text.

Command to Rotate Counter-clockwise: If specified, the keyboard shortcut to rotate counter-
clockwise, and the accompanying menu text.

Allow Arbitrary Rotations: If selected, then the user can drag the Game Piece to rotate it to any
facing.

Command to Rotate Randomly: If specified, this command will rotate the piece to a random
facing (in one of the valid facings, if applicable).

B can Rotate properties EJ

Description: |Facing
Number of allowed facings: 6

ICommand to rotate clockwise: |CTRL CLOSE_BRACKET | Menu text: [Rmate CW
ICommand to rotate counterclockwise: |CTRL OPEN_BRACKET | Menu text: Rotate CCW

ICommand to rotate randomiy: | | Menu text: \

[Anow arbitrary rotations

Ok Cancel

Like other Traits, Can Rotate will affect only

those Traits that appear above it in the list of Traits

for a Game Piece. Traits below the Can Rotate Trait will be drawn on top of the rotated image.

Since the rotations are created on the fly from a bitmapped image, the image quality of a rotated
counter may be lower than the unrotated version. You may get better image quality for your rotations
by creating separate images for each rotation in an external image editor and putting them into
different levels of a Layer.

Can Rotate Trait System Properties

The Can Rotate Trait includes these system Properties. In the name of the Properties, <name> is the
name specified in the attributes above.

Property Description

Property Description

70

<name>_Facing The current facing, if the number of facings is
fixed.

<name>_Degrees The current rotation angle, if arbitrary rotations
are allowed.

B Clone properties

ICommand name: |§3!_q_m_a_
Keyhoard Command: |CTRL C

Clone
Clone will duplicate the Game Piece during a game. The Trait has these attributes:

* Command Name: The Command Menu item to clone the piece.

* Key Command: The keyboard shortcut of the command.

B Delete properties

ommand name: Delete

eyboard Command: [CTRL D |

o] [cmen

Delete
Delete will delete the Game Piece from the game. The Trait has these attributes:

* Command Name: The Command Menu item to delete the piece.

* Key Command: The keyboard shortcut of the command.

Does Not Stack

A Game Piece with the Does Not Stack Trait will not form stacks with other pieces. In addition, a
piece with this Trait can be assigned special treatment when it comes to selection and movement.

The Trait has these attributes:

* Select Piece: Controls how the piece is selected: either normally, never (can never be selected),
only when the shift key is down (shift-click to select the piece), or only when the Alt and shift
keys are down (alt-click to select the piece).

* Move Piece: Controls how the piece is moved: either normally, never (cannot be moved once
placed) or only if selected (select piece, then click and drag to move).

» Ignore Map Grid When Moving: If selected, then this piece will not snap to the nearest Grid
location.

Some uses for the Does Not Stack Trait include:

71

* In games that mix cards and counters, the Do Not Stack Trait can be assigned to cards, so that
the cards can be placed on a map without interfering with stacks of counters. In addition, the
cards will not form stacks and be generally easier to manipulate on screen.

* Pieces that represent map features, such as buildings, can use the Move Piece - Never option so
that players do not inadvertently move them around.

Dynamic Property

A Dynamic Property Trait enables you to assign a custom Property to the Game Piece, and to define
commands to change the value of the Property during play.

Setting a Property does not in itself give a Game Piece any particular behavior. The Property must
be recognized by some other component in the module. Dynamic Properties are used by Global Key
Commands and other components and often by custom Java classes.

B Dynamic Property properties E|
IName: |Hit Points |
alue: 20 |
[#] Is numeric:
Minimum value: |0 i |
Maximum value: ‘Eﬂ
| | Wrap?
Key Commands
Remove |Menu Command: i\;_haﬁe_\r_aﬁe | Key Command: lcTRLY | Type: ‘Pmn’muser ¥ P[nmpa. Changevalue of HP |
HNew ‘
Ok Cancel

The Trait has these attributes:

* Name: The name of the Property.
» Value: The value of the Property at the start of a new game.

* Is Numeric? If selected, then changes to the value of the Property will be restricted to integer
values.

 Minimum Value: Numeric values will be restricted to no less than this number.
 Maximum Value: Numeric values will be restricted to no more than this number.

* Wrap? If selected, then when incrementing this numeric Property, values will wrap around
from the maximum to the minimum.

* Key Commands: Adds any number of commands to the right-click drop-down menu for this
Game Piece. Click the New button to add a new command and the Remove button to remove
one. For each command, specify the text of the drop-down menu entry and the keyboard
shortcut. The type defines how the Property value should change:

0. Set value directly sets the Property to a fixed value. You can set a numerical value or the value of
another Property. (To specify a Property, enter the name of the Property in $-signs; for example,
$ExampleProperty$.)

0. Increment numeric value adds a fixed value to the Property. You can set a number, or the value
of another Property. (To specify a Property, enter the name of the Property in $-signs; for
example, $ExampleProperty$.)

0. Prompt user displays a dialog for the user to type in a new value.

72

0. Prompt user to select from list displays a dialog with a drop-down menu for the user to select
from.

Example: we define a Dynamic Property called Hit Points that represents the amount of damage taken
by a warrior. Hit Points has a maximum level of 20, and a minimum of 0. We add a command to the
Property with a Command Menu item of Change Value and a shortcut of Ctrl-V. When the user selects
Change Value, the module prompts for the new value of Hit Points. Dynamic Properties do not
display their values on a Game Piece, but we could display the current value of each warriorQs Hit
Points using a Text Label or a Layer.

If a PropertyUs value always remains the same during the game, it may be better to define it using the
Marker Trait instead.

See page 52 for more information.

Global Hotkey

The Global Hotkey Trait adds an action that invokes a Hotkey (that is, a keyboard shortcut for a
Toolbar button) in the Main Controls windows or a Map Window. For example, you could use a
Global Hotkey to trigger the firing of a Global Key Command Button or Dice Button.

Global Hotkey properties E‘
Description: |Roll Dice

enu text: |
eyboard Command: |[CTRLR

lobal Hotkey: |F 2 '
Ok Cancel

Define the hotkey for the button you wish to invoke before creating the Global Hotkey Trait.
The Trait has these attributes:

* Menu Command: Command menu text.
* Key Command: Keystroke or Named Command of the menu item that initiates the command.

* Global Hotkey: The Keystroke or Named Command that will be applied to the Main Controls
window.

EXAMPLE: A Dice Button component has been added to the Toolbar, and given the Hotkey F2. A Game
Piece is given a Global Hotkey Trait with Menu Text Roll Dice, Keyboard Command Ctrl-R, and Global
Hotkey F2. Now, selecting the piece and typing Ctrl-R or selecting Roll Dice from the Command Menu
will roll the dice button just as if the player had clicked the button in the Toolbar or typed F2 from the
keyboard.

Global Key Command

The Global Key Command (GKC) Trait adds an action that applies a keyboard command to other
pieces, similar to the Global Key Command component of a module or Map Window. A GKC Trait
can potentially affect any pieces anywhere in the game, on any map.

73

NamedKeyCommand.pdf#top
NamedKeyCommand.pdf#top

The Trait has these attributes:

* Description: Description of the GKC Trait.
* Menu Command: Menu text of the command to activate the GKC.
» Key Command: Keystroke or Named Command of the menu item that initiates the GKC.

* Global Key Command: The Keystroke or Named Command that will be applied to other pieces.

Matching Properties: The key command will only be applied to pieces with the specified
Properties.

Restrict Range: If selected, the command will only apply to pieces located within a specified
distance of this piece.

Within a Deck, Apply To: Select how this command applies to pieces that are contained within
a Deck.

0. No pieces means that all pieces in a Deck ignore the command.

0. All pieces means that the command applies to the entire Deck.

0. _ Fixed number of pieces enables you to specify the number of pieces (drawn from the top)
that the command will apply to.

= Restrict Range: Only others pieces within this distance, inclusive, of this piece will have
the command applied to them. If the pieces are on a board with a Hex Grid or
Rectangular Grid, then the distance is in units of the Grid. Otherwise, the distance is
measured in screen pixels.

p. Fixed Range: If selected, then the range is specified as a fixed number. If unselected, then the
range will be given by the value of the named Property.

- Suppress Individual Reports: If selected, then any auto-reporting of the affected pieces will
be disabled. Use the Report Action Trait to provide a summary message in their place.

Commands applied by Global Key Commands will be affected by piece ownership. If the GKC triggers a
command that is restricted by side, the action may not take place as intended when the restricted side
triggers the GKC (by button or other command).

EXAMPLE: A leader counter and infantry counters both have Marker Traits to specify their nationality
and type. A Layer Trait represents the rallied state of an infantry counter, uses Ctrl A to activate the
layer, and uses Rally as the name. A Global Key Command on the leader counter can select and rally
all infantry counters within two hexes of the same nationality that are not rallied by specifying
Range=2 and matching Properties type=Infantry && nation=$nation$ && Rally_Active=false.

Invisible

The Invisible Trait gives a Game Piece the capability to be made invisible (or, visible if the piece is
already invisible). An invisible Game Piece will be seen as translucent by the hiding player but
completely hidden from the view of the other players.

Use of the Invisible Trait will require you to define Sides in the game. See page 37 for more
information.

74

NamedKeyCommand.pdf#top
NamedKeyCommand.pdf#top

The Trait has these attributes:

B Invisible properties
feyboard command: [CTRL|

Menu Text: |Invisible |

Backgroundcolor: "' | Select
Can by hidden by: |Any player [~

Con [emen]

* Key Command: Keystroke or Named Command to toggle visibility.
* Menu Command: Menu text of the command to toggle visibility.

* Background Color: To the player who turned it invisible, the piece will appear transparent
against a background of the specified color. To other players, it will not appear at all.

* Can Be Hidden By: Defines who may hide this piece (and see it once hidden).
0. Any Player means that any player may hide this piece, including observers.

0. Any Side means that any player who has been assigned a Side in a game (that is, not an
observer) can hide this piece. If the player resigns and another player takes the Side, then the
new player for that Side will be the owner.

0. Any of the Specified Sides enables you to enter a list of Sides. Only players assigned to one of the
named Sides can hide the piece, but the players of all the listed Sides will be able to see and
modify the piece. This is useful for referee players or games with multi-player teams.

The Invisible Trait only hides those Traits that are above it in the list of Traits. In addition,
movement Report Traits will not return any report on the movement of Invisible pieces.

Invisible Trait Properties

The Invisible Trait includes one System Property:

Property Description

InvisibleToOthers Has a value of true if the piece is hidden.

Layer

75

NamedKeyCommand.pdf#top

B Layer - calender year.png properties

ame: |Year Marker

] Mlways active? [Underneath when highlighted?
[¥] Loop through levels? offset:[0 0|
] Levels follow Property Value?
Activate key: |[CTRL A
Increase key: |[CTRL]
Decrease key: |[CTRL i[
Reset to level: |1 J Command: [Reset Year | Keybhoard: CTRL R |
Randomize: Command: | Keyhoard:
“|lmage 1
Image 2
Image 3
1940 ~ mage 1
image 5
|_llmage 6
.~ image 7
calender year 40.png w (Image 8
L evel Name: 1 940) is prefix () is suffix
Add Level I Remove Level
| Ok || Cancel |

A Layer Trait is used for interactively changing the appearance of Game Pieces. Layers have a
number of uses that include, but are not limited to:

* Changing a piecels appearance: A Layer Trait can be used to change a Game Piecells appearance,
equivalent to flipping a two-sided counter to its reverse face. For example, a tank counter has
two faces: one shows the tank at full strength and the other at depleted strength. The Basic Piece
Trait could show the Tank at full strength and a Layer could show it at its depleted level. Where
a physical counter may only have two sides, the Layer Trait can actually reflect any number of
counter OfacesO.

* Placing a status marker: A Layer can substitute for placing a separate status marker on top of
another piece. For example, in the actual board game, when a unit is targeted by other units, a
separate counter is placed atop it that says OTargeted. In the module, a OTargetedD Layer can be
created for units and a menu item added to toggle this marker on and off.

* Creating a piece layout: A Layer can be used to change the foreground or background images
assigned to a Game Piece. For example, a Game Piece is defined with a blank image for the Basic
Piece Trait. The background is defined as a Red or Blue Layer, and the foreground is defined as
an Infantry symbol or Tank symbol. During the game, the same piece could be switched from
red to blue background, and the symbol could be switched from Infantry to Tank, so one piece
could actually be turned into 4 separate units.

To simulate two -sided pieces where one face of the piece is hidden from one or more players, it0s
better to use the Mask Trait. See page 52 for more information.
Configuring a Layer

A Layer Trait consists of a number of 'levels[], each of which has an image and a name. The Layer
can be activated with a keyboard command, and players can change the current level during play.
The image from the current level will be drawn whenever the Layer is activated. The Layer is
drawn on top the Traits that appear above it in the list of Traits.

The Trait has these attributes:

76

Name: The name of this Layer, used for reference during editing and as the prefix for the name
of any Properties defined by this Layer.

Always Active: If selected, then this layer is always active; that is, the current layer will always
be displayed. If unchecked, then the layer must be activated (by the specified keyboard
command) in order to display the current layer.

Underneath When Highlighted: If selected, then this layer will be drawn underneath the rest
of the piece when the counter has been highlighted (by clicking on it).

Loop Through Levels: If selected, then increasing the level past the last one will loop through
to the first level and vice versa. Otherwise, increasing the level has no effect if the current level
is the last level.

Offset: The images of a level are drawn with their center offset from the center of the
underlying piece by a number of pixels specified by the offset boxes, with positive numbers
giving an offset down and to the right. For example, if a layer image is 40x40 pixels and you
want it to be drawn so that the lower-left corner is at the center of the Game Piece, set the offset
to 20,-20.

Levels Follow Property Value: If selected, then you can specify the name of a numeric
Property that will determine the active level, rather than responding directly to keyboard
events. A typical use will specify the name of a numeric Dynamic Property on the piece, or a
Global Property. As the Property changes value, the level displayed will change as well. You can
also specify the numeric value of the Property that should correspond to the first level of this
Layer.

Activate/Increase/Decrease: Specify the keyboard commands and Command Menu text that
will activate the Layer and increase or decrease the current level. The Activate keyboard
shortcut can specify a string of characters, such that the layer is activated only when all the
corresponding keys have been pressed. The Increase/Decrease keyboard shortcuts can also
specify a string of characters, so that the level is increased/decreased when any one of the keys
is pressed.

Reset To Level: Specifies a keyboard command that resets the Layer to a specified level. This
does not automatically activate the Layer.

B2 Layer - VP Count properties @
Name: VP Count I
[v] Always active?] Underneath when highlighted?
] Loop through levels? Offset: |0 MD
i¥| Levels follow Property Value? Property Name: VPvalue | Level 1= !D

key: | |

Image 1

36 s |
Image 3
r Image 4
Image 5
i Image 6
= limage 7
VP Ger-36.png | > Image 8
| evel Name: [36] | T is prefix O is suffix
Add Level i Remove Level
Ok Cancel

Randomize: Specifies a keyboard command that sets the Layer to a randomly selected level.

77

* Level Images: Specify the image to be shown for each layer by double-clicking or selecting from
the drop-down menu. An image can be left blank to display nothing for that level. Using
transparency in the images can be very useful.

* Level Name: Each level can be given an individual name, which is used to change the name of
the piece for reporting purposes during play. The level’s name either replaces the piece’s
normal name, or else modifies the piece’s normal name as a prefix or suffix.

Examples of Layers

 For a basic two-sided counter, add a Layer, and select an image that represents the reverse side.
Change Activate to Flip and set the key to Ctrl-F.

» To represent fatigue in an Army counter, give it a Layer named Fatigue. Select Always Active,
choose four images that represent the levels, and change Increase to Increase Fatigue and
Decrease to Decrease Fatigue. A Reset command named Rest using Ctrl-R could be used to bring
the Army counter back to full strength. Name the levels " (fatigue 1)", and so on, and check is
suffix to append the current fatigue level to the piece’s name.

Composite Piece Images

In most cases, a Game Piece image is a static representation, based on a single created or scanned
image.

However, you can construct the appearance of a Game Piece using a composite set of images. For
the basic piece image, you could use a solid-color (or even transparent) GIF or PNG, and then create
the actual piece appearance by compositing semi-transparent Layers. This gives you more
flexibility when creating actual units, as well as cutting down on the number of graphic images you
require, as you can re-combine image layers to create the pieces.

Even if you use this method, the Basic Piece Trait for the piece must still be assigned an image. The
image can be a transparent or semi-transparent PNG or GIF.

For example, we create the Russian armies for our World War II game. Each Russian Tank unit will
consist of a red background, one Layer consisting of a Tank icon, and another Layer showing the
unit strength. Because there are two kinds of Tank units, one light and one heavy, each will have a
different strength, which is determined when the unit is deployed. We define the units as follows:

» Basic Piece Trait image includes the solid red background.

* One Layer, called Icon, shows the Tank icon. (Everything else in the image is transparent except
the tank icon, so the red background will show through.)

* Another Layer, called Strength, has two levels, and each shows the unit strengths for light and
heavy tanks. (As above, the rest of the image is transparent except the Strength text.)

*Game Pieces: Trait Descriptions™®

When a tank is deployed, the player can select the layer showing the correct strength of the unit.
The counter will appear to be a single image. Such a scheme could easily be implemented by using
Prototypes (see page 67).

78

Layer Trait Properties

The Layer Trait includes these system Properties. <layer_name> is the Name of the Layer defined in
the Layer dialog box.

Property Description

<layer_name>_Image Name of the currently active level’s image file.

<layer_name>_Name Name of the currently active level.

<layer_name>_Level Number of the current level.

<layer_name>_Active Has a value of true if the Layer is active, false
otherwise.

EXAMPLE: A Layer named Manpower that is active and showing level 4 defined with image Man04.gif
and name (strength 4) would have the following Properties:

* Manpower_Image = Man04.gif

* Manpower_Name = (strength 4)

* Manpower_Level =4

* Manpower_Active = true

These Properties could be used in a Global Key Command to automatically remove all counters whose
manpower was zero.

NOTE: The Game Piece Layer Trait is not related to the Game Piece Layers option for Map
Windows.

Mark When Moved

A piece with the Mark When Moved Trait will display a specifiable image every time they are
moved. Specify the image and the position at which to draw the image. You can also toggle the
image on and off manually.

In order to enable this feature, you must also go to the Global Options of the module and enable the
setting Mark pieces that move. Enabling this feature will automatically add a button to each Map
Window, which when clicked will clears the Moved status of all pieces on the map.

The Mark When Moved Trait is a requirement for the Movement Trail Trait.

Mark When Moved properties
Command: |Mark Moved

Heyboard l: [CTRL M

WMarker Image: I Select [Default

Horizontal Offset: [0
\Vertical Offset: |0

Con et |

79

The Trait has these attributes:
* Command: Menu text of the command used to manually mark piece movement. (Even if left
blank, the keyboard command will still appear on the Command Menu.)
* Key Command: Keyboard shortcut of the command to manually mark piece movement.

* Marker Image: Image displayed to mark piece movement. Click Select to choose a custom
image.

* Horizontal Offset: Horizontal offset, in pixels, of the displayed image.

Vertical Offset: Vertical offset, in pixels, of the displayed image.

Mark When Moved can be very useful in PBEM games, which may take days or longer between turns,
to keep track of opponent moves.

Mark When Moved Properties

The Mark When Moved Trait includes one system Property:

Name Description

Moved Has a value of true if the piece has been moved.

Marker

A Marker sets (marks) one or more custom Properties on a Game Piece. The defined Property is
static and its value cannot be changed during the game.

Setting a Property does not in itself give a Game Piece any particular behavior. The Property must
be recognized by some other component in the module. Markers are used by Global Key Command
and Game Piece Layers components and often by custom Java classes used in a module.

To use a comma in a name or value, precede it with a backslash ('\).

Defining Multiple Properties: You can define multiple name-value pairs for multiple Properties by
separating the names and values with a comma (,").

B Marker - Side = US propert... El

Property name: |Side|

Property value: |U |

5
Ok \ cancel \

The Trait has these attributes:

* Property Name: Name of the Property.

* Property Value: Value of the Property. Can be text or numeric.
For Properties that can be changed during a game, see Dynamic Property on page 46.

NOTE: The Marker Trait is not related to the Place Marker Trait.

80

Assigning a Piece to a Game Piece Layer

Marker Traits are commonly used to assign Game Pieces to Game Piece Layers (GPLs), which cause
Game Pieces to be drawn on different levels. (You should set up the Game Piece Layers for the map
first. See page 24 for more information.)

To assign a Game Piece to a Game Piece Layer,

= wo Mo

Set up the Game Piece Layers for the map.
Assign the Marker Trait to the piece.
In Property Name, type the name of the Game Piece Layer Property (for example, Layer).

In Property Value, type the name of the layer you will assign the piece to. The name must
match one of the GPLs already assigned to the map.

Totaling the Number of Pieces on a Map

You can use the Marker Trait in conjunction with the Set Global Properties Trait to sum the number
of pieces on a map.

1
2.

Create a Global Property called PieceTotal.

For the new Global Property, create a Change-Property button called Zero Total that will set
PieceTotal to O (In Type, choose Set Value Directly).

Create a Marker on each piece you want to add to the count. Name the Marker Count, with a
value of 1.

Create a Set Global Property Trait on each piece, which will increment PieceTotal by 1.

Create a Global Key Command called Total Pieces. For Global Key Command, use the keyboard
shortcut of the Set Global Property Trait you specified in Step 3, and in Matching Properties,
enter Count = 1.

Create a Toolbar Action Button called Count Report. In Display Message, and enter Total
Number of Pieces on Map: $PieceTotal$.

Create a Multi-Action Button called Total, and add the Zero Total, Piece Total, and Count Report
buttons to it.

Now, when the Multi-Action Button is clicked, PieceTotal will first be zeroed out (to remove any
previous totals), then each piece will add 1 to the PieceTotal, and the Action Button will report the
total in the chat window.

Mask

A Mask is used for hiding the true appearance of a piece, such as when you play a facedown playing
card. A Masked Game Piece will show its mask to players other than the one who hid it. The hiding
player can still view its true face. This Trait is useful for card games, block games, or games with
concealable pieces. (Note that unlike an Invisible piece, a Masked piece will still remain visible.)

Any piece with a Mask Trait, such as a playing card, must have a back side image defined, or when
the masked Game Piece is revealed the Piece will seem to vanish to all players.

81

Like the Invisible Trait, this Trait only hides Traits that appear before it. Generally, it should be
before any Invisible Trait and after all other Traits of the piece.

Use of the Mask Trait will require you to define Sides in the game. (See page 37 for more
information.)

A piece with the Mask Trait is "owned" by the player who masks it. If unmasked and masked again
by a different player, the second player becomes the owner. Menu commands of Traits hidden by a
masked piece are not available to non-owning players. A setting in the Global Options determines
whether or not non-owning players can unmask pieces.

Mask properties

Mask Command: |Reves| | Keyboard Command: CTRL F

Can be masked by: |Any player

Miew when masked:

OB.)-Back.png

Name when masked: |Secrat Objective \

Display style: iu:e Image

0B Maskpng -
[Ok [Cancel |

A Mask Trait is best used only once for a given piece. For pieces with that may have several different
appearances, use the Layer Trait instead. See page 49.

The Trait has these attributes:

* Mask Command: The name of the Command Menu entry that mask or unmasks this piece.
* Key Command: The keyboard command to mask or unmask this piece.

* Can be Masked By: Defines who may mask the piece from other players)
0. Any Player means that any player may mask this piece, including observers.

0. Any Side means that any player who has been assigned a Side in a game (not an observer) can
mask this piece. If the player resigns and another player takes the Side, then the new player for
that Side will be the owner.

0. _Any of the Specified Sides enables you to enter a list of Sides. Only players assigned to one of
the named Sides can mask the piece, but the players of all the listed Sides will be able to see
and modify the piece. This is useful for referee players or games with multi-player teams.

= View when Masked: To non-owning players, the piece will be drawn using this image.
= Name when Masked: To non-owning players, the piece will be given this name.

= Display Style: Determines how the owning player sees a masked piece. The following
options are available:

p- Inset draws the regular piece with the mask image at reduced size in the upper left corner. (The

82

size of the reduced image is not customizable.)

0. Background draws the mask image at full size and the regular piece at reduced size centered
within it. (To make a mask image appear in a different location, use a mostly-transparent
graphic the same size as the counter or Card, with the mask in the location that you want it to
appear.)

0. Plain draws only the mask image, so the piece looks the same to all players. A Peek command
key may be specified. When the owning player selects the Peek command, he will see the
unmasked piece so long as it remains selected (that is, until he clicks elsewhere on the map). If
the Peek command key is left blank, then the owning player will see all selected pieces in their
unmasked state.

A Peek command is temporary. If yould like to allow the owning player to see the hidden piece on a
permanent basis, use one of the other display styles instead.

0. Use Image draws the unmasked piece and then a specifiable image on top of the piece. The
image should make use of transparency to let some of the piece information through.

EXAMPLE: An ordinary playing Card can be implemented by setting the Basic Piece Trait to represent
the front of the Card. Then add a Mask Trait. In the Mask Trait settings, specify an image for the back
of the playing Card. When a player types Ctrl-P, that Card will be known only to him (as though held in
his hand). Typing Ctrl-M will reveal the Card to the other players (as when playing it on the table).

Mask Properties

The Mask Trait includes one System Property:

Property Description

ObscuredToOthers Has a value of true if the piece is masked.

Move Fixed Distance

The Move Fixed Distance Trait defines a command to move the piece a fixed distance upwards and
to the right.

If this piece has a Can Rotate Trait listed before this Trait, then the resulting direction will be
relative to the current facing of the piece.

» If a Game Piece had the Can Rotate Trait followed by Move Fixed Distance (upwards 60 pixels),
then the Move Fixed Distance command would move the piece in whatever direction the top of
the piece is facing.

 If a Game Piece has Traits Move Fixed Distance (upwards 60 pixels), followed by the Can Rotate
Trait, then the move command would move the piece towards the top of the screen regardless
of the facing of the piece.

The Trait has these attributes:

» Description: Description of the command (will not appear on the piece).

83

Command Name: Menu text of the command used to move the fixed distance.
Keyboard Shortcut: Keyboard shortcut of the command used to move the fixed distance.

Distance to the Right: Distance, in pixels, the unit is moved to the right. To move the unit to the
left, use a negative number.

Distance Upwards: Distance, in pixels, the unit is moved up. To move the unit down, use a
negative number.

Move Entire Stack: If selected, when the piece is part of a stack that is not expanded, the
command will move the entire stack.

Advanced Options: If selected, additional movement increments can be specified. The two
numbers specified in the advanced options are multiplied together, and added to the basic
distance, to get the final distance moved. Example: An army unit can conduct a forced march for
extra movement. The amount of additional movement depends on its supply, which is tracked by a
Dynamic Property. The Move Fixed Distance Trait is given an additional offset of one hex times the
value of the supply level Property.

Movement Trail

Game Pieces with the Movement Trail Trait will leave behind a graphical trail showing the positions
through all positions to which the piece has been moved. The trail consists of a circle for each past
location, connected by straight lines. The piece must also contain a Mark When Moved Trait.

The Movement Trail is reset when the moved status of the Mark When Moved Trait is cleared.

B Movement trail properties

ey Command: [CTRL T

lenu Command: }anemem Trail |

Display Trail Points Off-map for [20 pixels)
Display Trails Off-map for |30 pixels|
Ok } Cancel [

[v] Trails start visible?
[v] Trails are visible to all players?

Circle Radius: |10

—— "
Circle Fill Color: | Select |

Line thickness: [1.0] \
[Selected Unit Trail Transparency (0-100): 100 |
Unselected Unit Trail Transparency (0-100): ISB \

The Trait has these attributes:

84

Key Command: The keyboard shortcut to toggle the movement trail. If left blank, then the trail
is always visible.

Menu Command: The Command Menu item to toggle the movement trail. If left blank, no menu
entry appears, although the keyboard command may still be enabled.

Trails Start Visible: If selected, at the beginning of each move, the trail will be visible.

Trails Visible To All Players: If selected, then toggling the visibility of the trail will affect all
players' views and will be saved along with the game. Otherwise, each player controls the
visibility of trails on that player’s view.

* Circle Radius: The radius, in pixels, of the circle representing each location in the trail.
* Circle Fill Color: The color of the location circles.

* Line Color: The color of the connecting lines.

* Line Thickness: The thickness, in pixels, of the connecting lines.

* Selected Transparency: The transparency of the trail when the piece is selected. 0 is invisible;
100 is opaque.

* Unselected Transparency: The transparency of the trail when the piece is not selected. 0 is
invisible; 100 is opaque.
* Display Points Off-Map: If the map has buffer space surrounding the boards, the trail circles

will be drawn within this distance from the board edges.

* Display Trails Off-Map: If the map has buffer space surrounding the boards, the trail lines will
be drawn within this distance from the board edges.

Movement Trails can be very useful in PBEM games, which may take days or longer between turns, to
keep track of piece movement in detail.

Automatically Resetting Movement Trails

Using several commands together, you can cause movement trails to be automatically reset on a
Game Piece at the start of each turn.

1. Add the Movement Trail and Mark When Moved Traits to the piece (or Prototype) for which you
wish to automatically reset trails.

2. Add a Global Key Command to the module. Assign it a Hotkey. For Matching Properties, enter
Moved = true. For Global Key Command, enter the Key Command from the Mark When Moved
Trait (which will toggle the movement trail).

3. Create a Turn Counter and a Counter (or List). Add a Turn-Based Global Hotkey. Use the Hotkey
of the Global Key Command you created in Step 2.

Now, each time you advance the Turn Counter, the Global Hotkey will trigger the GKC, which will
reset movement trails on any pieces that have been moved. The trails will show again normally
when the piece is moved.

Non-Rectangular

The Non-Rectangular Trait enables you to specify an arbitrary shape for a Game Piece, based on a
partially transparent image such as a GIF or PNG file.

The shape of a Game Piece is used to determine where the player must click to select a Game Piece
or bring up its Command Menu. It also is used to highlight the outline of the piece when it has been
selected.

By using transparent colors in your GIF or PNG, you can make your Game piece be drawn with any
shape. However, without the Non-Rectangular Trait, the piece can be selected even by clicking on
the transparent portions of the image, which can lead to confusion if the image uses a great deal of

85

transparency.
The Trait has one attribute:

* Image Shape: select an image shape from the drop-down list of existing image files in your
module, or double-click to add a new one.

Place Marker

A Game Piece with the Place Marker Trait will have a menu command that places a different piece
(the marker) on or near it.

You can select any existing piece for the marker, or define a new one from scratch.

Place Marker properties g|
Description: |F‘Iases a victory marker

ICommand: Place Marker

feyboard Command: (CTRL M

Objective

N

@

[Horizontal offset: [0
Vertical offset: [0

| Define Marker | Sselect
|

[Match Rotation?
Keystroke to apply after placement: |

| Ok || Cancel

The Trait has these attributes:
* Horizontal Offset: The marker will be placed this many pixels to the right of the original piece.
Any value other than zero will prevent the marker from stacking with the original piece.

» Vertical Offset: The marker will be placed this many pixels above the original piece. Any value
other than zero will prevent the marker from stacking with the original piece.

* Match Rotation: If selected, and both the original piece and the marker have the Can Rotate
Trait, then the rotation angle of the marker will be adjusted to match that of the original piece.

* Place Marker: Choose whether the marker should be place on the top of this piece’s stack, on
the bottom, or directly above/below the triggering piece.

* Keystroke to apply after placement: Optional keystroke to be applied automatically to the
marker immediately after being placed

EXAMPLE: If a game uses a fortification counter to indicate fortified status of an army counter, this
Trait could be given to the army counter to place a fortification marker on the army with a keyboard
command, as an alternative to dragging the fortification counter from the Game Piece Palette.

The Place Marker Trait is not related to the Marker Trait.

Play Sound

The Play Sound Trait enables you to specify a command that plays an audible sound. The Trait has

86

these attributes:

Play Sound properties

Keyboard Command: ?CT_RL_A
[Sound Clip: { Select }mach_ine gun.way

l¥| Send sound to other players?

o] [camen]

e Menu Command: The name of the menu item in the Command Menu.
* Key Command: The Keystroke or Named Command for the command.

* Sound Clip: Select a file in .au, .aiff, or .wav format to add it to the module. The sound file
specified in this field will be played when the action is invoked. (MP3s are currently not
supported.)

* Send Sound to Other Player: If selected, then the sound will be echoed to other players when
playing live or reading from a logfile. Otherwise, the sound is only audible to the player who
invoked the command.

Playing a Sound with a Piece Action

To combine a Play Sound trait with another piece action, create a Trigger Action that includes the
Play Sound Trait with the piece action.

For example, a Zorkon war cruiser has a Cloaking Device represented by an Invisible Trait. Each
time the war cruiser cloaks (or de-cloaks), we want it to play a “whoosh” sound. We first define the
Invisible Trait no command name, but with a shortcut of Ctrl -I. Next, we define a Play Sound trait
with no command name, a “whoosh” sound clip, and a shortcut of Ctrl-P. Finally, we define a
Trigger with the command name Cloak and a shortcut of Ctrl-Shift-C. Under Perform These
Actions, we enter Ctrl-I and Ctrl-P. Now, selecting Cloak from the war cruiserJs Command Menu
will invoke both Traits.

Alternately, for simple actions, instead of defining a Trigger Action, you can specify the keyboard
command for the Play Sound trait to use the same keyboard command for the other action. When
this keyboard command is invoked, both Traits will be triggered.

Movement Sounds

Using the Play Sound Trait, you can cause a Game Piece to make a sound each time it is moved in a
particular Map Window, simulating the sound of a game piece being moved on a board.

1. Locate or create the sound file you wish to play when the piece is moved. (Typically, this is a
“click” sound.)

2. Create a Game Piece with the Play Sound Trait. Specify a keyboard command. For Sound Clip,
select the sound file you created in Step 1.

3. Double-click the [Map Window] node the sound will be played on.

4. In the Map Window Properties dialog, in Key Command to Apply to All Units Ending
Movement on This Map, enter the keyboard command for the Play Sound Trait you defined in

87

NamedKeyCommand.pdf#top

Step 2. Now, each time the piece is moved, the sound clip is played.

Property Sheet

The Property Sheet Trait attaches an arbitrary set of editable Properties to a Game Piece. This can
be used for character sheets, piece attributes, and many other functions. The Trait has these
attributes:

* Menu Command: Name of the menu item to show the Property Sheet window.

* Key Command: Keystroke or Named Command to show the Property Sheet window.

* Commit Changes On: When a player edits the Properties window during play, there are three
methods for committing changes:

o

o

o

Commit on Every Keystroke: Every keystroke and tick-mark click you make are immediately
committed as you make them. Other players see your changes immediately.

Commit on Apply Button or Enter Key: Changes are not communicated to other players until
you click the Apply button at the bottom of the Property Sheet, press the Enter key on your
keyboard, or close the Property Sheet window.

Commit on Window Close or Enter Key: Changes are not communicated to other players until
you press the Enter key or close the Property Sheet window.

* Background Color: You may customize the background color of each Property Sheet window,
for example to use different colors for the pieces belonging to different Sides.

* Properties: You may select from these formats in which to display Properties:

o

o

Text: A simple, single-line field that accepts text.

Multi-line text: A field that accepts multi-line text. This type of field stretches to fill extra
space on the Property Sheet window. It is suitable for free form notes.

Label Only: This is not really a Property; it simply adds text to your Property Sheet. It is
useful for documenting your Property Sheet.

Tick Marks: Displays one or more rows of checkboxes. Suitable for tracking ammo or
damage. Players specify a current and maximum value range.

Tick Marks with Max Field: As above, but the maximum value is displayed in an editable
field to the left of the checkboxes. Suitable for role-playing games where damage tracking is
based on a character attribute.

Tick Marks with Value Field: As Tick marks, but the current value is displayed in an editable
field. Suitable for large-value Properties where clicking ticks might be impractical and when
the exact tick value is important. For example weapons that track 100+ rounds of ammo.

Tick Marks with Value and Max: As Tick marks, but both current value and maximum values
are editable.

Spinner: A numeric Property that includes increment and decrement buttons.

Using Tick Marks

Tick Mark Property types have a value and a maximum. Either, both, or neither may be displayed

88

NamedKeyCommand.pdf#top

as a text box in addition to the tick marks. Initially, the maximum and value are both 0, so no tick
marks appear. To set the value or maximum when the box is not shown, right-click in the area
where the tick marks would appear.

Pre-defining Values in a Property Sheet

Generally, Property Sheets values are defined at game time. For example, in a game where pieces
represent fantasy gladiators, the Property Sheets will be used to record each individual fighter{s
personal attributes like Strength or Hit Points, and are filled in by the players when the game
begins.

However, you can pre-define the values in a Game Piecels Property Sheet, so that the selected piece
will have the values filled in already. This is useful when all pieces of a given type have the same
Property Sheet values. For example, in the fantasy gladiator game, we decide that every Orc has a
Strength of 12 and 14 Hit Points. If these values were pre-filled, each Orc counter(s Property Sheet
would have these values already assigned when placed on the map.

Note that this method will not work if the piece inherits a Property Sheet from a Prototype. The
Game Piece must have the Property Sheet Trait directly in order to be pre-defined.

To pre-define a Game Piece’s Property Sheet,
1. In the Game Pieces Palette, select the piece whose Property Sheet you want to pre-define. (Do
not drag it to the map.)
2. In the Palette, right-click the piece and select the Property Sheet from the Command Menu.
3. Enter the values for the sheet as desired.

4. Save the module. Whenever a Game Piece of this type is drawn from the palette, the values you
entered will be already defined in the Property Sheet.

Prototype

The Prototype Trait assigns a Prototype to the piece from the module0s list of Prototype Definitions.
A Game Piece can have any number of Prototypes assigned.

Before assigning a Prototype to a Game Piece, define it under the [Prototype Definitions] node. See
page 67 for more information on creating Prototypes.

In terms of Trait order, a Prototype Trait is treated as a single block of Traits. Traits below the
Prototype will affect all Traits that are part of the Prototype. Traits that are part of the Prototype will
affect all Traits above the Prototype.

The Prototype Trait has one attribute:

* Prototype Name: The name of a Prototype Definition.

89

A Game Piece assigned a Prototype exposes a Property called Type.

Replace with Other

A Game Piece with the Replace with Other Trait will have a menu command that replaces the piece
with a different one. You can select any existing piece for the replacement, or define a new one
from scratch.

For example, a unit that can be destroyed but still leaves a wreck behind, could be given this Trait
to replace the original counter with a wrecked version. This would be more convenient than
dragging a new piece from the Game Piece Palette, and can’t be accidentally undone, as a Layer
Trait could.

90

Description: Description of the Trait. (Will not appear on the piece.)
Command: Text of the menu item used to replace the piece.
Key Command: Keyboard command of the menu item used to replace the piece.

Define Replacement/Select: Click Define Replacement to define a new replacement for the
piece, or click Select to select an existing piece.

Horizontal Offset: The replacement will be placed this many pixels to the right of the original
piece.

Vertical Offset: The replacement will be placed this many pixels above the original piece.

Match Current State: If selected, VASSAL will attempt to put the replacement piece in the same
state as the original piece. Layers will be set to the same level, labels will be given the same
value, rotation angles will match, and so on. The state of a particular Trait will carry over only if
it has an exact match in the replacement, that is, the Properties settings of that Trait are the
same in both the original and replacement piece.

Only Match States Above this Trait: If selected, VASSAL will only replace states in Traits that
occur above this one in the list Traits in the Game Piece Editor. For example, the state of a
Marker that’s above this one will change if the state in the new Game Piece. If it’s below, then it
will not change if the new Game Piece has the same marker Property.

Place Marker: Choose whether the marker should be place on the top of this piece’s stack, on
the bottom, or directly above/below the triggering piece.

Keystroke to Apply After Placement: If desired, enter a keystroke to be applied to the
replacement piece after it is placed. For example, the replacement Wreck counter described
above includes a Play Sound Trait (Ctrl-P) of an explosion, which is applied after the Wreck
counter is placed.

Description: [Reduce
Command: [Flip |

Keytioard Command; [CTRLF |

9%; | Define Replacement | select |

Harizomal offset. [0 |
Vertical offset: |0 |
[v] Match Current State?

[¥] Only match states above this trait?
Keystroke to apply after placement: |ALT SHIFT Di

& cancel |

Replacing a Piece with Multiple Pieces

The Replace With Other Trait will replace a Game Piece with only a single piece. To replace a Game
Piece with multiple pieces, combine the Replace with Other Trait with a Trigger Action. For
example, we want to replace a Game Piece A with 3 copies of piece B. On Piece A, we define a
Replace with Other Trait with a Keyboard Shortcut of Ctrl-R. (We leave the Command empty.) The
Replace with Other Trait will replace A with B.

We define a Trigger Action on Piece A, with a shortcut of Ctrl-T. In the Perform These Keystrokes
section of the Trigger Action, we enter Ctrl-R three times, once for each copy of B.

Now, invoking the Trigger Action on Piece A with Ctrl-T will perform Replace with Other three
times, replacing A with three copies of B.

The same process could be used to replace multiple pieces with non-identical pieces. However, we
would need to define three different Replace with Other Traits on Piece A, one for each piece type.
The keyboard shortcuts for each of these Traits would then be included in the Trigger.

Creating Lockable Pieces

Using Replace With Other, you can create pieces that can be moved normally on the board, but will
include a command that locks them, preventing them from being moved. (What will actually be
occurring is that a command will switch the mobile piece with the immobile one, and back again.
However, to players, this switch will be invisible.) To do this, you need to create two nearly
identical pieces, one mobile and one immobile.

1. Create the mobile piece: In a Game Piece Palette, create the mobile Game Piece. Add whatever
Traits you choose to add to define the piece, except Replace with Other. During the game this
piece will be moved normally, by drag and drop, to its position.

2. Create the immobile piece: In the Editor, right-click the Piece you just created, pick Copy, and
then Paste the copied piece into the Palette. During the game, this piece will be locked, so add
the Does Not Stack Trait to this piece. In the Does Not Stack dialog, define how this piece will be
selected, and whether or not the piece can be moved when selected or not moved at all.

3. Go back to the mobile piece you created in Step 1, and add the Replace with Other Trait. Define
the Properties of the Trait in the Replace with Other dialog as follows:

> Description: Enter Lock Command.

o Command: Enter Lock.

91

- Key Command: Enter Ctrl+L (or other appropriate shortcut).

o Click Select. Browse to, and select, the piece you created in Step 2 (the immobile piece).
o Check Match Current State.

o Leave the other values on the dialog empty and click Ok.

4. So the piece can be unlocked, for the immobile piece you created in Step 2, add the Replace with
Other Trait, and then define the Properties of the Trait in the Replace with Other dialog. Then
enter the following:

- Description: Enter Unlock Command.
o Command: Enter Unlock.
- Key Command: Enter Ctrl+U (or other appropriate shortcut).

o Click Select. Browse to, and select, the piece you created in Step 1 (the mobile piece).

o

Check Match Current State.

o Leave the other values on the dialog empty and click Ok.

During a game, players can select the mobile piece, move and place it normally, and then select the
Lock command. This will replace the mobile piece with the immobile one. To unlock the piece later,
players choose Unlock on the immobile piece, which invokes the replacement (mobile) piece.

Alternately, instead of defining the immobile piece on a game piece palette in Step 2, you can define
it in the Replace with Other Trait of the mobile piece by clicking Define Replacement instead of
Select in Step 3. Then, add the exact same basic image and Traits as the mobile piece possesses, as
well as the Does Not Stack Trait. Add and define the Replace with Other Trait as well, using the
parameters from Step 4. This method will make the immobile piece inaccessible through game
palettes, and only accessible by selecting the Lock command on the mobile piece.

Report Action

A Game Piece with the Report Action Trait will report a configurable message to the Chat Window
when any of a given set of key commands is entered. (The report will appear whether the key
commands are entered by a player or invoked automatically, such as with a Global Key Command.)

In order for Report Actions to display text in the Chat Window, the Map Window that the piece
currently is on must have the setting Auto-Report Format For Units Modified on This Map
enabled. (By default, this is set to $message$.) If this setting is empty, then no Reports will be
returned.

* Report on these Keystrokes: Specifies the keys that this Trait will respond to. Click the Add
button to specify more than one key.

* Cycle through Different Messages: If left unchecked, the same message will be reported
whenever any of the above keys are pressed. If selected, the message to be reported will cycle
through the list specified below. Each time one of the keys if pressed, the next message in the list
will be reported, returning to the beginning after the end is reached.

* Report Format: The Message Format for reporting non-cycling messages:

92

EReporl Action properties

Description: |Turret Facing
Report on these keystrokes: | Add ‘

CTRLT
[¥] Cycle through different messages?
Message formats
Faces NW
Add | Remove | msem | [FacesN

Report previous message on these keystrokes: | Add

SHIFTT]

o. menuCommand is the name of the piece’s Command Menu item that corresponds to the control
key pressed.

0. oldPieceName is the name of the piece before the action is applied.
o. newPieceName is the name of the piece after the action is applied.
0. mapName is the name of the map where the piece is located.

0. oldMapName is the name of the map before the action.

o. location is the map location where the piece is located.

o. oldLocation is the location before the action is applied.

If a Game Piece is deleted or replaced as the result of an action, then the value of oldLocation and
oldMapName will depend on the order of the Traits, while mapName and location will be blank.

* Message Formats: A list of Message Formats for cycling messages. Available variables are the
same as above. Any Properties defined on the piece will be substituted. To access the value of a
Property before the change, add the prefix old to the name. For example, if a Game Piece has a
Property hitPoints, then $hitPoints$ gives the value after the key command and $oldhitPoints$
gives the value before.

* Report Previous on these Keystrokes: When any of these keys are pressed, the message
reported will be the one the precedes the last reported message, instead of the following one.

Report Action Examples

* An Infantry unit has a single layer that is activated with a Ctrl-F "Flip" command. You add a
Report Action with Report Key Ctrl-F, and a message $newPieceName$ flips in hex $location$.
When the player flips the unit, the Chat Window reports Infantry flips in hex 3321.

* A piece includes the Invisible Trait, toggled by Ctrl-I. A Report Action Trait is added with report
key Ctrl-I and two cycling messages: $oldPieceName$ goes invisible in $location$ and
$newPieceName$ revealed in $location$. The messages will be shown in order whenever will
report when the unit becomes invisible or is revealed.

93

Restrict Commands

The Restrict Commands Trait enables you to disable or completely remove certain keyboard
commands from a Game Piece when certain conditions or contexts apply. For example, you could
restrict some commands on a piece to only be useable by certain players, or on certain boards. Like

other Traits, it will only affect those above it in the Properties list, so it should be placed after the
commands it restricts.

B Restrict Commands properties

Description: |Disable Dormant

Restriction: |Disable v

Restrict when properties match: |CurrentZone = Repairs |
Restrict these Key Commands ‘ Add ‘

CTRLT

CTRLF

CTRL §|

Ok | Cancel |

Some uses of the Restrict Commands Trait include:

* A piece may remove certain commands based on where it is on the map by matching the
CurrentZone Property.

* A piece with a Layer specifying a damage level may disable commands based on the Level
Property of that Layer.

* Commands used only during the setup portion of the game (Turn 0) can be disabled during
gameplay turns (Turn > 1).

The Trait has these attributes:

* Name: A name, for identification purposes.

* Restriction: Select Hide to remove a command from the Command Menu entirely. Select Disable

to disable (gray out) the command. In either case, the restricted action will not be invoked with
its corresponding keyboard combination is pressed.

» Restrict when Properties Match: The commands will be restricted when the Properties of this
piece match the given expression

* Restrict These Key Commands: Specify the keyboard commands that will be hidden or
disabled. The corresponding Command Menu item (if any) will also be restricted.

A Restricted Command will not be fired as part of a Trigger Action or GKC if the Properties of the piece
match the restricting conditions. For example, if a piecels Clone command (Ctrl-C) is Restricted on a
board named Battlefield, (CurrentBoard = Battlefield), then any Trigger using that Ctrl-C command
will not work correctly for pieces on the Battlefield board.

Restricted Access

A Game Piece with Restricted Access can only be controlled by a specified Side. Other players will
not see menu items corresponding to Traits appearing above the Restricted Access Trait in the list
of Traits for the Game Piece, and the corresponding keyboard commands will do nothing.

94

Restricted Access properties

Belongs to side

Referre]
Add | Remove] Insert ‘

o][ot

Allied ‘

The Restricted Access Trait has these attributes:

* Belongs to Side: Enter a Side, and then click Add to add it to the list of Sides. The Sides must be
one of those listed in the definition of

Player Sides. Only players playing one of the specified Sides will be able to modify this Game Piece.

» Also Belongs to Initially-Placing Player: If selected, then the player who initially clicks on the
piece (or first places it on any map) will become the owner, in addition to listed Sides. It is a
good idea to specify at least one Side when using this option. Otherwise, any pieces created by
an observer will not be able to be removed. If, during a game, a player clicks the Retire button
to become an observer, then all pieces owned by that player become owned by nobody, even if
the player was already an observer. Pieces in a Game Piece Palette can be manipulated by
anybody, as long as no game is in progress.

If you assign the Restricted Access Trait to a Game Piece, you will need to add Sides to the game. See
page 37 for more information.

Return to Deck

The Return to Deck Trait will send a Card to a Deck. This Trait will have no effect on ordinary Game
Pieces, only Cards. The Trait has these attributes:

* Menu Command: Menu text of the command used to send the piece to a Deck.

* Key Command: Keystroke or Named Command used to send the piece to a Deck.

» Select Deck: Click Select Deck to choose a Deck to be sent to. Alternatively, select Choose
Destination Deck at Game Time, and players will be prompted to select a Deck to send the
Card to after invoking the command.

For example, in a game in which Cards are drawn from a Deck, used, and placed into
a discard pile, both the Deck and the discard pile will be represented by a Deck
component. By adding a Return to Deck Trait to each Card, with the text *Discard*
and the command 'Ctr1-D', and the Discard Pile selected as the destination, then
clicking Ctr1-D on any Card would automatically send it to the Discard Pile.

This TraitOs name is slightly misleading. A Card with this Trait can actually be sent to any Deck: the
one the Card came from, or an entirely different Deck.

For more about creating Decks and Cards, see page 74.

95

NamedKeyCommand.pdf#top

Send to Location

The Send to Location Trait adds a command that moves a Game Piece directly to another location.
The Trait has these attributes:

B Send to Location properties

Description: Send to Damaged Pool
ommand name: |8indt0 Damaged Pool

eyhoard Command: ‘im

[Send Back Command name: \Return from Damaged Pool
iSend Back Keyboard Command: |CTRL SHIFT D

Destination: Location on selected Map -
Map: ‘ |‘ Select Clear I
Board: | I‘ Select Clear

X Position: IEI |
Y Position: |0 |

[¥] Advanced Options

IAdditional X offset: |0 times |0 |
dditional Y offset: [0 | times |0 ‘

e

* Command Name: Text of the menu item used to send the piece.
* Key Command: Keyboard shortcut of the menu item used to send the piece.

* Send Back Command Name: Menu text for an undo command, which will return the piece to
its original location.

* Send Back Keyboard Command: Keyboard shortcut for the undo command

» Destination: Choose a destination type for the piece.

0. Location on Selected Map: Sends the piece to a defined X-Y coordinate. In Map, click Select, and

then select a Map Window. In Board, click Select, then select a Board from the selected Map
Window.

Further, specify the X-Y coordinates of the location on the board, in pixels. If no board is specified,
positions are relative to the Map Window.

0. Zone on Selected Map: (Used for maps with Zones defined.) In Map, click Select, and then select
a Map Window. In Zone Name, enter the name of a Zone from the Map Window.

0. Region on Selected Map: (Used for maps with Regions defined.) In Map, click Select, and then
select a Map Window. In Region Name, enter the name of a Region from the Map Window.

0. Another Counter, Selected by Properties: To send the piece to another counter, in Property
Match, specify one or more Properties to match as a final destination for the piece. The
Property Match should match a unique piece or unexpected results may occur. For example, to
send the piece to a unique piece on the Main board named Commander, the value of Property
Match would be CurrentBoard = Main && PieceName = Commander.

Game Pieces that are moved to another Map by the Send to Location Trait will not trigger the Auto-
Report Format For Movement To This Map message on the new Map.

* Advanced Options: The value of these two Message Formats will be multiplied together and

96

added to the position specified above to give the final destination position for the piece.

EXAMPLE: A game may require that damaged units be returned to a Damaged pool for repairs.
Different boxes in the pool represent the amount of time before the unit is fully repaired. A Game Piece
may be given a Send to Location Trait with name Send to Damaged Pool and command Ctrl-P and
position corresponding to the first box of the pool, with an additional offset, determined by the level of
a Layer representing the damage, to place it in the appropriate box in the pool.

Set Global Property

The Set Global Property Trait enables a Game Piece to change the value of a Global Property. The
Trait has these attributes:

* Description: A descriptive name of the command (Will not appear in the Command Menu).

* Global Property Name: The name of the Property to be set. (The name can include the name of
another Property. Set it off by using $-signs; for example $Example$_Property would be a valid
Global Property name.)

* Locate Property Starting in the: You may name a Zone or Map containing the Global Property
to be set, or you may set the Property based on the piece’s current location, looking for the
occupied Zone or Map before defaulting to the Module. (The name can include the name of
another Property. Set it off by using $-signs; for example $Example$_Map would be a valid Map
or Zone name.).

* Is Numeric: If selected, then the value of the Property will be restricted to integer values.
* Minimum Value: Numeric values will be restricted to no less than this number.
* Maximum Value: Numeric values will be restricted to no more than this number.

* Wrap Around: If selected, then when incrementing this numeric Property, values will wrap
around from the maximum to the minimum (or vice versa).

* Key Commands: Adds any number of commands to the right-click drop-down menu for this
Game Piece. Click the New button to add a new command. For each command, specify the text
of the drop-down menu entry and the keyboard shortcut. The type defines how the Property
value should change:

0. Set value directly: Sets the Property to a fixed value, after substituting values of other Properties
defined for this Game Piece.

0. Increment numeric value: Adds a fixed value to the Property. You can use a numeric value or the
value of another Property. (If you specify a Property, enter the name of the Property in $-signs;
for example, $ExamplePropertys$.)

0. Prompt user: Displays a dialog for the user to type in a new value.

0. Prompt user to select from list: Displays a dialog with a drop-down menu for the user to select
from.

97

Spreadsheet

B Spreadsheet properties

lenu Command: |Personal eapons|

Heyboard Command: CTRL S

Number of rows: [2]
Number of columns: ,[2 |

I Ok Cancel

The Spreadsheet Trait attaches an editable table of data to a Game Piece. A Spreadsheet is simply
for the tabular display of data (or text). It is not capable of performing any mathematical operations
on cells, rows, or columns in the table.

* Menu Command: Text of the menu item used to display the Spreadsheet.

* Key Command: Keyboard shortcut of the menu item used to display the Spreadsheet.

* Number of Rows: Number of rows in the spreadsheet.

* Number of Columns: Number of columns in the spreadsheet.
Currently, VASSAL has no method for handling mathematical formulas.
Pre-populating Spreadsheet Data

Generally, Spreadsheet values are defined at game time. However, you can pre- define the values in
a Game Piecells Spreadsheet, so that the selected piece will have the values filled in already. This is
useful when all pieces of a given type have the same Spreadsheet values.

Note that this method will not work if the piece inherits a Spreadsheet from a Prototype. The Game
Piece must have the Trait directly in order to be pre-defined.

To pre-define the values of a Game Piece’s Spreadsheet,

1. In the Game Pieces Palette, select the piece whose Spreadsheet you want to pre-define. (Do not
drag it to the map.)
2. In the Palette, right-click the piece and select the Spreadsheet command.

3. Enter the values for the sheet as desired.

4. Save the module. Whenever a Game Piece of this type is drawn from the palette, the values you
entered will be already defined in the Spreadsheet.

Sub-Menu

The Sub-menu Trait enables you to group menu items associated with other Traits into a sub-menu
in the Game Piece’s Command Menu. Use it to organize command menus for ease of use.

98

Sub-Menu properties

Menu name: |[Move \
Sub-commands

Jinches |
Add I Remove I Insert |

Lo

2 inches

1inch ‘

Sub-menus may contain other sub-menus, to any nesting level. Items added to a Sub-menu will not
appear independently.

Items added to a Sub-Menu are case-sensitive.
The Trait has these attributes:

¢ Menu Name: Name of the sub-menu.

* Sub-commands: Click Add to add the name of another command from the piecels Command
Menu. Commands added will be displayed in the Sub-menu in the order they are listed.

Example: If a Game Piece has three separate layer Traits with corresponding activate commands
Entrench, Fortify, and Blockade, then those menu items can be gathered under a single sub-menu

named Defense by creating a Sub-Menu Trait with Menu Name Defense and Sub-commands Entrench,
Fortify, and Blockade.

Text Label

The Text Label Trait displays a text label on or near the Game Piece. The text of the label can be
fixed or specifiable by a player at game time. The Trait has these attributes:

B2 Text Label properties

Name format: |§pieceMame§ (§label§)

[menu command: [change Label

§<eyboard Command:
Font: ‘Dia@og I v
Font size: |10 | Bold? [] Halic? []

Text Color: . Select ‘ Background Color: ™'

\ertical position: Top w | Offset: |E|
Horizontal position: |Center | v | Offset: |0

WVertical text justification: iBot!urn

Horizontal text justification: ICemer

Rotate Text (Degrees): [
Property Name: |TextLabel

» Text: The starting value for the label text. (You can set this to the value of a Property on the
piece by enclosing it in $-signs.) By enclosing the text within tags, you can use simple HTML
format to specify various colors, fonts and sizes. Example: <html>Bold text<p>with a
line break<p>and different colors</html>
would display as:

Bold text

99

with a line break

and different colors

100

Name Format: A Message Format that specifies how the name of this piece will be reported:
pieceName is the name of the piece excluding the label, label is the value of the label text
(including, unfortunately, HTML tags). If the label is empty, then the default name of the piece is
always used.

Menu Command: If not blank, gives the text of the corresponding menu item in the piece’s
Command Menu

Menu Key Command: If blank, the text of the label is permanent. If set, then gives the keyboard
command to set the text of the label.

Font: Text is drawn using this font.
Font Size/Bold/Italic: The text is drawn at this size, optionally in bold or italics.
Text Color: The text is drawn using this color.

Background Color: The text is drawn within a solid rectangle of this color. Click Select and
then Cancel to use a transparent background.

Vertical Position: Draw the label with the given offset from the top, bottom, or center of the
piece.

Horizontal Position: Draw the label with the given offset from the left, right, or center of the
piece.

Vertical Justification: Whether the top edge, bottom edge, or center of the label will be drawn
at the Horizontal Position specified above.

Horizontal Justification: Whether the right edge, left edge, or center of the label will be drawn
at the Vertical Position specified above.

Rotate Text: The text will be rotated clockwise by this angle. Rotation is performed after the
horizontal/vertical justification and positioning specified above.

Property Name: The value of this label will be exposed as a Property with the given name.
Ordinarily, a Text Label trait comprises its own Property, which you can name when you create
the Trait.

For example, in a naval wargame, we want a Text Label trait to show each shipls
individual name, such as _HMS Victory_. We use the following settings:

Text: We leave this blank. Players will be able to specify the string at the start of a game.

Name Format: $pieceName$ ($label$). For a battleship piece, this would show, Battleship (HMS
Victory).

Menu Command: Set Ship Name, with a keyboard shortcut of Ctrl+N.
(We set font size, color, position, and other cosmetic settings as appropriate for the piece.)

Property Name: ShipName. We can now use ShipName as a Property for things like Report
Traits on the piece, and other functions.

Using a Text Label to Display a Property

You can use a Text Label Trait on a Game Piece to display the value of any Property defined on the
Game Piece (as well as Global Properties). This is handy to display Property values you have
separately specified for the Game Piece, such as Dynamic Properties, or to create a Odisplay piecel
that shows the value of some Global Property.

To display the value of a separately defined Property as a Text Label,

1. In both Text and Name Format, enter the name of the piecells Property or Global Property you
wish to display, surrounded by $-signs. (You can add additional label text here; any text not
surrounded by $-signs will be displayed literally.)

2. Leave the values of Menu Command, Keyboard Command, and Property Name blank.

3. Enter display values (font size, color, position, and justification) for the label as appropriate.

For example, if a Starship piece had a Dynamic Property Trait called EnergyLevel, we could display
the value of the starshipls

Energy Level with a Text Label by entering this in both Text and Name Format:
Shipls Power: $EnergyLevel$.
When the ship has a power level of 5, what will be shown in the label is ShipOs Power: 5

You can enter any number of Property names. For example, you could also show the ShieldLevel
Property in the label by entering this in Text and Name Format:

B Trigger Action properties

Description: Move Forward, expend 1 action point \
rigger when properties match: | \
lenu Command: |Move | Keystroke: [CTRL M |

Watch for these Keystrokes: l Add :

Perform these Keystrokes: | Add
CTRL SHIFT M \
CTRL OPEN_BRACKET] |

L Ok J| cancel |

Shipls Power: $EnergyLevel$ Shield Level: $ShieldLevels.

Trigger Action

A Trigger Action Trait combines multiple keyboard commands into one, or automatically invokes
keyboard commands in response to other keyboard commands, when certain conditions apply. A
Trigger Action can be keyed to fire on command, to fire when one or more keystrokes are made, or
when either of these apply and certain conditions (Properties) are matched.

The Trait has these attributes:

» Trigger Name: Descriptive name of the Trigger Action. (Will not appear on the Command
Menu.)

101

» Trigger When Properties Match: The corresponding key commands will be performed only if
the piece matches this Property expression. Property match is optional.

A keyboard command must be actively invoked to launch a Trigger Action. Trigger
Actions cannot passively Olistenl for matching Properties and then fire
automatically.

* Menu Command: Adds an item to the piece’s Command Menu that will launch the trigger
commands manually commands, as long as the Property expression is matched.

* Key Command: Keystroke or Named Command for the manual menu command.

* Watch for These Key Commands: After the user types any of these Keystrokes or Named
Commands, the commands listed under Perform These Keystrokes will be launched, if the
Property expression is matched.

* Perform These Key Commands: The key commands to be invoked after one of the above key
commands is observed and the Property expression is matched. The commands are invoked in
sequence from top to bottom.

Example 1: A piece has a Layer to track action points and a Move Fixed Distance Trait to move it
forward. The Move Fixed Distance Trait can be assigned the key command Ctrl- SHIFT-M with no
command name (so that it does not appear in the Command Menu). Then a Trigger Action Trait with
the command Move and the keystroke Ctrl-M can trigger both the Move command and decrease the
action points layer by one.

Example 2: A piece has separate Layer Traits for hit points and for a "critically wounded" status for
when the hit points are less than 2. A Trigger Action Trait can watch for the keystrokes that affect the
hit-point layer and respond by activating the wounded layer by matching the Property expression for
when the hit points are < 2 and the wound level is not active.

To suppress the command menu labels for the keyboard commands that compose the Trigger
Action, omit the text labels for the individual commands. Then the only way to invoke these
commands will be to fire the Trigger Action. If the text labels are not omitted, then each individual
command will also appear in the piecells command menu separately.

102

NamedKeyCommand.pdf#top
NamedKeyCommand.pdf#top
NamedKeyCommand.pdf#top

Prototype Definitions

Most games have counters that look different from one another, but behave very similarly.
Prototypes are a method of using templates to vastly simplify the definition of most Game Pieces. A
Game Piece assigned a Prototype will inherit all of the Traits assigned to the Prototype.

You first define a Prototype as a set of Traits, and then use the set in the definition of other Game
Pieces. A Game Piece can use any number of Prototypes.

For example, in the module World War II, we define a Prototype called Tank. The Tank Prototype
includes these Traits: Mark When Moved, a Layer showing the tank with its regular strength and
strength when damaged, and a Text Label allowing the owner to assign an ID number to the tank.
Then, in the US pieces list, we create a counter for the Sherman tank, and in the German pieces list,
we create one for the Tiger tank. Both of these pieces are assigned the Trait Prototype — Tank. Both
Sherman and Tiger tank counters will include all the Traits from the Tank Prototype, without
having to assign the Traits individually to each Tank counter.

It’s strongly recommended that you use Prototypes whenever possible when creating Game Pieces,
as module updates, revisions, and maintenance become considerably easier. When you decide to
change or update the pieces in a module, updating the relevant Prototype will update all the pieces
with that Prototype as a Trait, without having to individually update each piece.

For example, players of the World War II module described above complain that the font used in
the Text Label Trait on the tanks is too small. It0s easy to edit the Tank Prototype to change the Text
Label Trait to enlarge the font size from 9 points to 12. All pieces with the Tank Prototype will
follow suit automatically, without having to update the pieces individually.

Pieces that use Prototype Traits can still have additional Traits defined to give them their own
unique behavior.

Defining a Prototype

The process for defining a Prototype is just the same as for defining a Game Piece, but omits the
Basic Piece Trait. Trait order applies to Prototypes in exactly the same way as for Game Pieces.

To create a new Prototype Definition,

1. In the Configuration window, right-click the [Game Piece Prototype Definitions] node and
pick Add Definition.

2. In the Prototype dialog, select the Traits you wish to assign to the Prototype Definition, like you
would for a Game Piece.

3. Click Ok.

You can now assign the Prototype to Game Pieces or Cards by assigning them the Prototype trait,
and specifying the new Prototype.

103

Using Prototypes

As with regular pieces, Traits in Prototypes are evaluated from bottom to top.

Prototypes can include other Prototypes. Just assign the included Prototype as a Trait in the
containing Prototype.

You can use Prototypes to store any group of Traits that need to be re-used across multiple piece
types as a block. For example, imagine a war game where there are both land and naval pieces.
The naval pieces represent a variety of ships and submarines, all of which have common Traits:
a Text Label Trait indicating the unitls speed, and a Delete Trait named Sink that removes the
piece from the game. We could create a Prototype called Naval Unit that includes each of these
Traits and assign the Prototype to all ship and submarine pieces.

Pieces in At-Start Stacks, or that were created as part of the Replace with Other or Place Marker
Traits, which use Prototypes will be updated if the Prototype definition is ever changed.

Game Pieces that use Prototypes and are part of a saved game will not be updated if the
Prototype definition is updated. As a result, a Prototype Definition can change in a later version
of a module without invalidating saved games from previous versions. However, if you wish the
pieces in the saved game to use the updated Prototype, you will need to run the Saved Game
Updater in order to bring the pieces in a Saved Game up to date. See page 91 for more
information.

Pre-Setting Traits in a Prototype

If you want to pre-set pieces in a Game Piece Palette to start in a certain state, you can use key
commands on them to change their state, and then save the module. (See page 40 for more
information.)

Prototype Definitions: Defining a Prototype

However, if the Game Pieces use Prototypes, the Game Piece Palette always loads with the default
state of the Prototype. To resolve this, you can pre-set the state of a Trait in the Prototype Definition.

To pre-set one or more Traits in a Prototype Definition,

1.

104

In the [Prototype Definitions] node, right-click the Prototype Definition you wish to pre-set
Traits for.

In the Properties dialog, in the image preview window, right-click the piece image. From the
Command Menu, select a Trait and adjust it as desired.

If the Prototype does not include an image preview, you will need to expand the
size of the *Properties* dialog in order to select the Command Menu. Right-click
where the piece would be shown, in the white background area.

Repeat Step 2 for each additional Trait you wish to pre-set.

Click Ok.

Game Piece Image Definitions

Using Game Piece Image Definitions, you can build your own Game Piece images, by combining
text, images, and standard NATO military symbols. Images defined in this component will be
available for use with Game Pieces, just like any externally created images you have imported into
the module.

You can use your own images instead of the computer-drawn NATO symbols, so for many games,
you will be able to define the whole counter set with just a handful of images. Furthermore, you
can change the size and layout of all the counters in your game easily by adjusting the layouts.

Set up a Game Piece Image Definition in two steps:

AH
)
20
AH
i

I. Layout: First, create a Game Piece Layout. In the Game Piece Layout, you specify the position,
size and style of all items to be drawn on the counter. Colors, actual text, and symbol selections

are made in step 2.

Al Define Pieces: Define an individual image using a layout. In each Image Definition, you specify
the actual colors, text and symbols to be used for that image, based on the layout.

After defining the Game Piece Some examples of Game Piece
Image, you can assign it to the Image Definitions

Game Piece, along with any
Traits.

Use of Game Piece Image Definitions to create counters is optional. It0s best for use in wargames or
other games with a large number of standardized counters.

Game Piece Image Elements

Game Piece Image Definitions have the following elements: Named Color, Font Style, and Layout.

Named Colors

Each color you wish to use in Image Definitions is predefined and given a name. These colors will
appear in a palette for selecting foreground or background colors in the image. 14 Standard colors
are built-in: Clear, White, Black, Light Gray, Dark Gray, Red, Green, Blue, Orange, Pink, Cyan,
Magenta, Yellow.

105

* Color Name: The name of the color that will appear in drop-down menus in the Image
Definitions.

e Color: Standard Color selector to select the color to be associated with the name.

To create a named color,

i Ok Cancel ‘

1. Right-click the [Named Colors] node and pick Add Named Color.
2. On the Color Name dialog, in Color Name, name the new color.
3. In Color, click the color selector, and select the desired color.

4. Click Ok.

Font Styles

Font Styles used in Image Layouts are defined here and selected by name from drop-down menus.
A Font Style consists of a Font Family, size and style (plain, bold, italic, bold-italic). A default style is
always defined: 12 point Dialog font.

e Name: Stats |
ont Family: |Dialog -
ize: 516

vIBold [|ralic [| Outline
ample: The quick brown fox
[Ok I Cancel l Help |

Style Name: The name of the Font Style that will appear in drop-down menus in the Image
Layout.

Font Family: The Font Family to use. To ensure maximum compatibility and portability, only
the pre-defined Java logical fonts are available as options.

Size: The size of the font style in points.

Bold: Click on to select a Bold font style.

Italic: Click on to select an Italic font style.

Sample: Display a sample of your selected font style.
To create a font style,

1. Right-click the [Font Styles] node and pick Add Font Style.
2. On the Font Style dialog, enter the settings for the font style.
3. Click Ok.

106

Game Piece Layouts

A Game Piece Layout defines the general appearance and positioning of the items used in drawing
an image. Each Layout is composed of a rectangle of the background color, a border, and items such
a symbols, labels, text boxes, images, or shapes. These items are generic and defined in terms of
their appearance and position of the counter. Later, when the image is defined based on the layout,

we can specify actual settings for each of these items, such as the specific symbol to use, or the
specific text to show.

Name: [naval
Counter Width: [51
Counter Height: |51
Border Style: ISD 'I

Id Ci

s

St
Items
Name T Type [Position
Silhouette Image |Center
Id Label Top Left
Class Label |Top Right
Stats Label Bottom
Symbol H Label || Text Box H Image ” Shape
[Remove H Up H Down J

A Game Piece Layout has these attributes:

Name: The name of the Image Layout.

Counter Width: The width, in pixels, of all counters created using this layout.

Counter Height: The height, in pixels, of all counters created using this layout.

Border Style: The border style for all counters created using this layout. Border styles available
are:

0. Plain: Single-pixel line of defined color.
0. Fancy: Two-pixel shaded line of defined color. Mild 3D effect.
0. 3D: A three-dimensional shaded border. Two pixels

wide, color automatically determined from background color.

0. None: No Border

o Symbol: A Symbol is a generic symbol to be drawn by VASSAL. These must be NATO Unit
Symbols. The particular symbol is chosen in the Game Piece Image.

p- Name: The name of the Item. Items must be uniquely named within an Image Layout.

107

Name: |Symbal]
Location: | Center o

Symbol Set: hl]’ﬂl.llil'symlmi-s e
Width: |23 |
Height: 10 I
LineWidth: 10 |

["] Advanced Options

Location: Select the location of the item on the counter.

Symbol Set: Select the Symbol Set to use. (The only symbol set available currently is standard
NATO Unit Symbols.)

Width: The width of the body of the symbol in pixels.
Height: The height of the body of the symbol (not including the Size specifier) in pixels.

Line Width: The width of the line (in pixels) used to draw the symbol. Fractional line widths
can be used. The lines are drawn with anti-aliasing turned on, to produce smooth looking lines
of any width. When using a small symbol size, a line width of 1.0 will usually give the best
results.

0. ___ Advanced Options: If selected, you can specify values for X and Y offset, Rotation, and
whether or not to anti-alias the image.

= Label: A Label is a text label drawn in a particular font at a particular location. The
value of the text can be specified in the individual images or in the layout, in which case
all images using this layout share the same value.

Name: The name of the Item. Items must be uniquely named within an Image Layout.
Location: Select the location of the item on the counter. The location also determines the text
justification, i.e. selecting Top Left ensures that the upper left corner of the text is in the upper

left corner of the image. Once the justification is set by the Location, you can still use the X/Y
offset in the advanced options to place the text in a different location.

Font Style: Select the name of the Font Style to be used for this Text Item.

Text is: Select whether the text is specified in the layout or in the images.

0. ___ Advanced Options: If selected, you can specify values for X and Y offset, Rotation, and
whether or not to anti-alias the image.

= Text Box: A Text Box Item is multi-line area of text drawn in a particular font at a
particular location. The value of the text can be specified in the individual images or in
the layout, in which case all images using this layout share the same value.

Name: The name of the Item. Items must be uniquely named within an Image Layout.

Mame: |TextBoxd

Location: |Center v‘
Width: [40

Height: [320

[Use HTML:

Font style: |Derault. v|

Textis: | Specified in individual images v |
[l Advanced Options

108

o. Location: Select the location of the item on the counter. The location also determines the text
justification, i.e. selecting Top Left ensures that the upper left corner of the text is in the upper
left corner of the image. Once the justification is set by the Location, you can still use the X/Y
offset in the advanced options to place the text in a different location.

o. Use HTML.: If selected, then the contents will be interpreted as HTML.

o

. Font Style: Select the name of the Font Style to be used for this Text Item.

o. Text is: Select whether the text is specified in the layout or in the images.

0. __ Advanced Options: If selected, you can specify values for X and Y offset, Rotation, and
whether or not to anti-alias the image.

= Image: An Image item is an imported image.

p- Name: The name of the Item. Items must be uniquely named within an Image Layout.
0. Location: Select the location of the item on the counter.

o. Image is: Specify whether the image is specified in this layout or in the images that use this
layout. Use the File Open Dialog box to locate a copy of the image you wish to use on your PC.
When you save the module, VASSAL will attempt to copy this image into the images folder
within the module zip file. You can also manually copy images into your images folder.

Name: |Image0 |

Location: | Bottom - |

Image is: | Specified in individual images ¥ |
[_] Advanced Options

0. Advanced Options: If selected, you can specify values for X and Y offset.
- Shape: A Shape Item is a simple geometric shape.

p- Name: The name of the Item. Items must be uniquely named within an Image Layout.
0. Location: Select the location of the item on the counter.
0. Width: Select the width of the shape.

o. Height: Select the height of the shape.

o

. Shape: Select the type of shape.

o. Bevel: For Rounded Rectangle shapes, larger bevel values mean rounder corners.

0. __ Advanced Options: If selected, you can specify values for X and Y offset, and whether or
not to anti-alias the image.

= Items List: Items are drawn in the layout based on their order in this list. An item at the
top of the list will be drawn on top of the items below it. An item below another item in
the list will also be drawn below it in the Layout. Use these buttons to control items in
the Items List:

p- Remove: Removes the selected Item.

109

Game Piece Image Definitions: Game Piece Images

0. Up/Down: These move the selected Item up or down in the list and cause the item to be drawn
on top of, or below, the other elements.

Creating a Game Piece Layout
As you design the Layout, a preview is shown in the Game Piece Layout dialog box.

To create a Game Piece Layout,

—

. Right-click the [Game Piece Layouts] node and pick Add Game Piece Layout.

N

. On the Game Piece Layout dialog, specify the elements of the layout.
0. Name

0. Counter Width and Counter Height
0. __ Border Style
3. Select one or more items to include in the Layout by clicking the corresponding button, and
then entering the details of the item. Repeat for any additional items.

4. Click Ok.

Game Piece Images

Now that youlve created a Named Color, Font Style, and a Game Piece Layout, you can create one
or more images that use these elements, and choose specific values for the layout items.

For example, we can create a Game Piece Layout called British Unit. The Layout uses a brown
background and a Symbol Item placed in the center of the Layout. When we define an image based
on the Layout, we can choose a specific NATO symbol to appear in the Layout (for example, Cavalry
or Infantry). We can then save each image we create and use them when we assign images to Game
Pieces.

A Game Piece Image has these attributes:
* Name: Specify a name for the image definition. This is the name under which this image will

appear in the image-selector drop-down menu in a Game Piece Trait’s Properties.

* Background Color: Select a background color for the image from the drop down list of
available colors.

* Items: The Items panel shows the configurable items that make up your image layout. Click on
an item to display the configurable options for that item in the bottom display panel. There is a
different display panel for each type of item.

Symbol Item Configuration

* Unit Size: Select the NATO Unit Size specifier from the drop-down menu.

* 1st Symbol: Select the Primary NATO Symbol from the drop-down menu.

110

2nd Symbol: Select the Secondary NATO Symbol from the drop-down menu.

Symbol Color: Select the color used to draw the symbol lines.
* Background Color: Select the color to use for the background of the symbol body.

* Size Color: Select the color used to draw the Size Specifier drawn above the symbol body.
Label Item Configuration

» Value: Enter the text to display on the image.
* Foreground Color: Select the color to use to draw the text.

* Background Color: Select the color to use to draw a box behind the text.
Text Box Item Configuration

» Value: Enter the text to display on the image.
» Text Color: Select the color to use to draw the text.

* Background Color: Select the color to use to draw a box behind the text.
Game Piece Image Definitions: Game Piece Images
Image Item Configuration
Import an image to draw at the position specified in the layout.
Shape Item Configuration

» Foreground Color: Select the fill color for the shape.

* Background Color: Select the color for the shape’s outline.
Creating a Game Piece Image

To create a Game Piece Image,

Right-click the node and choose Add Game Piece Image.

In the Game Piece Image dialog, specify the Name and Background Color.

= WMo

Repeat for all additional Items in the list.

5. Click Ok.

In the [Game Piece Layouts] node, select a Game Piece Layout with which to create an image.

In the Items list, select an item and specify the details of the item for this particular image.

Once youllve created an image, it will appear in the image-chooser drop-down list alongside
imported images. You can then assign the Game Piece Image to Game Pieces. See page 40 for

information on creating Game Pieces.

111

Decks and Cards

Many games include decks of cards as part of play; in fact, some games consist entirely of decks of
cards. In VASSAL, Cards are created as a special form of Game Piece. However, the Deck
functionality can be applied to a range of Game Piece types besides traditional Cards, such as for
any pieces whose number is fixed or which need to be drawn randomly.

Creating a Deck

A Deck functions like a deck of playing cards. Each game begins with the contents of the Deck as
specified in the [Deck] node. During a game, players may remove Cards from the Deck by clicking
on the Deck and dragging cards from it with the mouse. This removes the Card from the Deck and
assigns ownership to the dragging player. Dragging a Card onto the Deck area adds it back to the
Deck.

Each Deck must be placed on a Map Window. A Deck may have a Command Menu that can include
specialized commands that will affect only the Cards in the Deck.

Deck Attributes

Each Deck has the following attributes:

B2 Action Deck
ame: \Acuon Deck
Belongs to board: l<any> w |

position: 600 |
position: 100 |
dth: [150 |
Height: |30 |
[Allow Multiple Cards to be Drawn?

|¥] Allow Specific Cards to be Drawn?

Contents are Face-down: |Always]- |

[_] Draw new cards face up?

Re-shuffle: Ma right-click Menu l - ‘

Re-shuffle Report Format: [mt |
[Re-shuffle Hot Key: | |
[_| Reversible?

[¥| Draw Outline when empty?

iColor: I Select

[¥] Send Hotkey when empty?
Hiot Key to send when Deck empties: [F10 |
[¥] Include command to send entire deck to another deck?

JSend Menu text: |Discard all - |
ISend Report Format: \werSide$ $commanwame$ﬁ \
[Send Hot Key: |) |

Name of deck to send to: \mw \ -]
[v] Can be saved-tofloaded-from a file?

[Maximum Cards to display in Stack:10 |
[v] Perform counting of property expressions?
Expressions to count:

facevalue>10

. Add I Remove i Insert]

Reposition Stack

\ Ok I Cancel] Help |

112

* Name: The name of a Deck is not used during game play. It is just used for identification in the
module editor.

* Belongs to Board: If a name is selected, the Deck will appear on that particular Board. If a game
does not use that Board, then the Deck will not appear. If Any is selected, then the Deck will
always appear at the given position, regardless of the boards in use.

* X, Y position: The position in the Map Window of the center of the Deck. If this Deck belongs to
a Board, the position is relative to the Board’s position in the Map Window.

» Width, Height: The size of the "tray" holding the Cards. If the Deck is empty, this determines the
area into which players may drag Cards to add them back to the Deck. It should be set to the
same size as the Cards the Deck will hold.

* Allow Multiple Cards to be Drawn: Adds a Command Menu entry that prompts the user to
specify the number of Cards to be drawn from the Deck with the next drag.

» Allow Specific Cards to be Drawn: Adds a Command Menu entry that prompts the user to
examine the Deck and select exactly which Cards will be drawn from the Deck with the next
drag.

* When Selecting, List Cards Using: When the user is prompted to select specific Cards from the
Deck, individual Cards will be listed using the specified Message Format.

* When Selecting, Sort Cards By: When the user is prompted to select specific Cards from the
Deck, the Cards can optionally be sorted (alphabetically) using the listed Property. Leave blank
to list Cards by their occurring position in the Deck. Example: Cards in a Deck can use a Marker
Trait to specify a Card number (001,002) and always list Cards in order of their assigned
number.

* Contents are Face-down: Determines whether Cards in the Deck are always face-down, always
face-up, or can be switched from face-up to face-down with a Command Menu entry.

0. Face Down Report Format: A Message Format that is echoed to the chat text window whenever
a player selects the Face Down menu item (if enabled above): DeckName is the name of this
Deck, commandName is the name of the menu item.

p. Draw New Cards Face Up: If selected, then Cards drawn from this Deck will be placed face-up
on the playing area. If un-checked, then Cards in a facedown Deck are drawn face down and
owned by the drawing player.

o Re-Shuffle: If set to Never, then Cards remain in their original order; Cards are drawn from
and added to the top. If set to Always, then Cards are always drawn randomly from the Deck.
If set to Via right-click menu, then a Shuffle command is added to the Deck’s Command
Menu.

g.- Re-Shuffle Report Format: A Message Format that is echoed to the chat text window whenever

a player

selects the "Shuffle" menu item (if enabled above): DeckName is the name of this Deck,
commandName is the name of the menu item.

* Reversible: Adds an entry to the Command Menu that reverses the order of Cards in the Deck.

gq. Reverse Report Format: A Message Format that is echoed to the chat text window
whenever a player

113

selects the Reversible menu item (if enabled above): DeckName is the name of this Deck,
commandName is the name of the menu item.

Draw Outline When Empty? Whether to draw the "tray" for the Cards. The "tray" is a rectangle
of the specified width and height, centered at the X, y coordinates. Only drawn when there are
no Cards in the Deck, to indicate where to drag Cards to place them back in the Deck. May not be
necessary if the Map Window contains a board onto which the tray is already drawn.

Color: The color of the rectangle representing the "tray" above.

Send Hotkey when Empty? Select this option to send a Global Hotkey whenever the Deck is
emptied.

r. Hotkey To Send When Deck Empties: Select the Hotkey combination to send whenever
enough Cards are removed from the Deck to empty it.

Include Command To Send Entire Deck To Another Deck: If selected, the Command Menu for
this Deck will include a command that sends every piece in this Deck to a designated Deck. For
example, this can be used to reshuffle a discard pile into its original Deck. The following three
attributes all refer to this option.

s. Menu Command: The text that appears in the Command Menu.

Report Format: A Message Format that is echoed to the chat text window whenever a player
selects Send

to Another Deck (if enabled above): DeckName is the name of this Deck, commandName is the
name of the menu item.

0.

p.
q.

114

Name Of Deck To Send To: The name of the Deck that the contents will be sent to.

o Can Be Saved-To/Loaded-From A File: If selected, the Deckls Command Menu will include
Save and Load items.

Save saves the contents of a Deck to a file.

Load replaces the contents of the Deck with the Cards specified in the file. Saved Decks can be
loaded into an entirely different game than the one used to save the Deck. This option is useful
for collectible Card games, in which a player may prepare a Deck offline in preparation for a
game.

- Maximum Cards To Be Displayed In Stack: This defines the maximum number of Cards to
graphically display in the Deck. The default is 10. For example, if set to 10, a Deck of 52 will
appear to have 10 Cards, until the actual number of contents drops below 10. Then the Deck
will visually start to shrink as Cards are removed. If set to 1, the Deck will appear flat like a
single Card.

o Perform Counting Of Property Expressions: Enable processing of Property expression
counting. Expressions must be defined.

Expressions To Count: Specify expressions to be counted within the Deck. These can be
whatever you like and must be in the format of: <expression name> : <expression> For each
expression, a map-level Property called <DeckName>_<expression name> is exposed. The
exposed value is number of pieces for which that expression evaluates to true. An example of
how to do this is provided on page 77. NOTE: Currently the only dynamic Property that can be

used in counting expressions is playerSide. Other dynamic Properties will most likely not
update if they change after pieces move into a Deck.

- Reposition Stack: Click to drag a representation of the Deck to its final position on the
board. This overrides any values you specified for X and Y positions, above.

Repositioning an Empty Deck: You must have at least 1 Card defined for a Deck in order to use the
Reposition function. If the Deck does not have any Cards, like a discard pile, define a single dummy
Card for the Deck, reposition the stack by dragging, and then delete the dummy Card when youllre
done.

Decks and Cards: Creating Cards
First create the Deck, and then create the individual Cards in it.
To create a Deck,

1. Select (or create) a Map Window where your Deck will reside.

2. Right-click the selected [Map Window] node and pick Add Deck.
3. In the Deck dialog, enter the attributes for your Deck.

4. Click Ok.

You may now create the Cards for the new Deck.

Deck Properties

Decks include these Properties. <Deckname> is the name of the Deck.

Name Description Property Level
<Deckname> numPieces Number of Cards in the Deck. Map
<Deckname>_<type> Number of Card types in the Map

Deck.

Creating Cards

You create Cards like other Game Pieces, and may use any of the standard Game Piece Traits.
However, by default, Cards include a Mask Trait to reflect their back face, which is hidden from
view until revealed.

The term “Card” is used to describe any piece in a Deck, even if it does not necessarily resemble a
traditional playing Card.

Cards may represent actual cards, blocks, map tiles, or any number of other counter types.
Once created, a [Card] node may not be converted into a [Game Piece] node, and vice versa.

In VASSAL 3.1.16 and earlier, Cards were created as part of a Deck and could never be pasted into
Game Piece Palettes. Similarly, ordinary Game Pieces could not be pasted into Decks. This is no longer

115

true in versions 3.1.17 and later—the two types of piece are interchangeable between Palettes and
Decks.

To create Cards for your Deck,

1. Expand the [Map Window] node where the Deck resides.
2. Right-click the new [Deck] node and pick Add Card.

3. In the Card dialog, select the Traits for the Card as you would a Game Piece.

Remember to define a base image for each Card, or the Card may appear to vanish when drawn from
a Deck.

4. Click Ok.
5. Repeat steps 2-4 until all Cards have been added to the Deck.

In the Module Editor, Cards are treated as a distinct piece type. Cards may not be pasted into Game
Piece Palettes, and ordinary Game Pieces may not be pasted into Decks.

For more information on creating Game Pieces, see page 40.

Cards and Prototypes

Cards from the same Deck often behave identically and are different only in their front faces. For
instance, they most likely have the same Card back images, and will likely be sent to the same Deck
(such as a discard pile) after use.

As a result, it0s highly recommended to define a Prototype for each Card type in your game, and
then assign the relevant Prototype Trait to each Card in a Deck. (See Prototypes on page 67.)

For example, the game includes an Event Deck where the Cards describe random game events. You
can create a Prototype called Event Card that includes a Mask Trait to reflect the common back of
the Event Cards, and a Return to Deck Trait that sends discarded Event Cards back to the Event
Deck.

By default, new Cards include a Mask Trait. You can delete the default Mask Trait and define it in
the Prototype instead.

Copying and Pasting Cards

Copying and pasting Cards can vastly speed up the process of Card creation. Define the first Card,
then right -click, Copy the Card, and paste it into your [Deck] node. You will now have an identical
copy of the first Card. You can then edit the copy and select a new image for the face of the Card.
You can create many new Cards quickly by repeating this method.

Editing the Contents of a Deck

You can make wholesale changes quickly to the entire contents of a Deck. Right-click the Deck and
pick Edit All Contained Pieces. The Properties dialog for the first Card is displayed, but any

116

changes you make in the Properties dialog will affect all Cards in the Deck. Add, remove or edit
Traits as usual, then click Ok. Your changes are applied to all Cards.

Card Properties

Cards have all the same Properties as regular Game Pieces. However, they also include these system
Properties:

Name Description

ObscuredToOthers Has a value of true if the Card is masked.

DeckName Name of the Deck the Card is currently stacked
in, if any.

Deck Global Key Command (GKC)

This component adds an action that applies a key command to pieces contained within the Deck,
similar to the Global Key Command component of a Map Window. Each Deck GKC has these
attributes.

* Menu Command: Name of the Command Menu item.

* Keyboard Command: Keyboard shortcut of the menu item that initiates the command.

* Global Command: The key command that will be applied to the Cards in the Deck.

* Matching Properties: The key command will only be applied to pieces with the specified
Properties. If you do not enter a Property expression, then all Cards in the Deck will be selected.

» Affects: The Global command can apply to all Cards in the Deck, or to a set number only. Use a
setting of 1 to select the top Card.

* Report Format: A Message Format that is echoed to the chat text window whenever the Global
Key Command is activated.

B Send Move

lenu Command: Send Move |
lobal Command: |CTRL M |
atching properties: |

Affects: |Fixed number of pieces | v |1
Report Format: |

‘ Ok [Cancel] Help :

To add a Deck Global Key Command to a Deck,

1. Expand the [Map Window] node where the Deck resides.

2. Right-click the new [Deck] node and pick Add Deck Global Key Command.
3. In the Deck Global Key Command dialog, specify the behavior of the GKC.
4. Click Ok.

117

Card Decks in Practice

The following examples of possible Card Decks illustrate a variety of uses for them.

* Playing Cards: An ordinary Deck of playing Cards for Poker or Hearts would be set to: Allow
Multiple = false, Allow Specific = false, Face Down = Always, Re-shuffle = Always, Reversible =
false.

* Discard Pile: A Discard Pile is a type of Deck that is typically empty at game start. Cards from
another Deck are drawn, played and then sent to the Discard Pile. When the other Deck is
empty, the Discard pile is usually re-shuffled into the other Deck, and play continues. To create a
typical Discard pile, define a Deck as usual, but use these settings:

o. Allow Multiple = false, Allow Specific = false, Face Down = Never, Re-shuffle = Never, Reversible
= false.

0. Select Include Command To Send Entire Deck To Another Deck and define a command that
when selected, will move all the discards back to the main Deck.

o. The Discard pile should begin empty, so there is no need to define Cards for it.

p- To move discards to the discard pile, for each Card in the main Deck, add a Return to Deck Trait,
specifying the Discard Pile as the destination Deck.

If discards are not intended to return to the main Deck but instead are permanently removed from the
game, it may be better to use the Delete Trait for each card instead of creating a Discard Pile

» Force Pool: A strategic game in which a nationality has a fixed force pool of variable-strength
Infantry, Armor, and other forces can be modeled by making a Map Window representing the
force pool, with a Deck of Infantry counters, a Deck of Armor counters, and so on. The Decks
would be set to Allow Multiple = false, Allow Specific = false, Face Down = Never, Re-shuffle =
Never, Reversible = false.

* Random Turn Order Cards: If the game has a random turn order, players may draw from a
Deck to determine who moves first, second and third. Create a Deck where each Card is labeled
1, 2, 3, and so on. Select Allow Multiple = false, Allow Specific = false, Face Down = Always, Re-
shuffle = Always, Reversible = false.

* Playing Cards with Number of Cards Displayed: You want to create a Deck of playing Cards,
and display the number of red Cards, the number of black Cards, the number of face Cards, and
the total number of Cards in the Deck. Create the Deck, and check Perform counting of
expressions. Add the expressions of "red: Color = red" and "black: Color = black". Also add the
expression "faceCards: value > 10". When creating your Cards, give them a Marker Trait named
Color with the values of red or black. Also give your Cards a Marker Trait named Value with the
numeric value of the Card. Then, you can refer to the counts with the map-level Properties of
<Deckname> _red, <Deckname>_black, and <Deckname> faceCards. The total can be referenced
by the map-level Property of <Deckname>_numPieces.

Map Tiles

Some games make use of map tiles, which are usually shuffled at the beginning of a game, drawn

118

randomly and then placed to provide a random map layout. (If the layout is not random, or is in a
regular row-column pattern, then an ordinary Map Window, with multiple Boards, will probably
meet your needs better.)

To create randomly-placed Map Tiles, do the following:

1
2.

Create (or select) a Map Window in which the tiles will be placed.

Create a solid-color board in the Map Window that will be large enough to accommodate your
map tile layout.

Add one or more Game Piece Layers to the Map Window. The lowest layer should be the Tile
level.

Create a Deck for the random Map Tiles to be drawn from. The Deck should have these settings:
Allow Multiple = false, Allow Specific = false, Face Down = Always, Re-shuffle = Always,
Reversible = false.

Create each Map Tile as a Card in the Deck. Assign each Tile to the Tile Game Piece Layer you
created in Step 3.

Now, at game start, players can draw random map tiles and place them in the Map Window. The
map tiles will always appear beneath all the other Game Pieces.

Dealing Random Cards to a Board

The Deck shuffle function can be used to deal randomly drawn cards from a Deck to pre-defined
locations on the board, using a single click of a Global Key Command button.

To deal random cards to a board, do the following:

1.
2.

Create or select a Map Window to send the pieces to.

In the Map Window, create a board with an Irregular Grid. Label the Grid points numerically (1,
2, 3,4, and so on).

Add a command to the selected Map Window (in Key Command to Apply to All Units Ending
Movement on This Map) of Ctrl-I.

Create a Global Property named GridLocation. This Global Property will be used to track the
next point to send the piece to. It should have minimum value that is the same as the lowest-
numbered Irregular Grid point (that is, 1), a maximum value that is the same as the highest-
numbered Grid point, and Wrap Around selected.

Create a Deck (on the same or different board) and make sure Re-shuffle is set to Always.

Add the first Card to the Deck. Add a Send to Location Trait to this Card: Send to Board (the
Board created in Step 2) and the Region (enter $GridLocation$ in the Region box).

Add a Set Global Property Trait to the Card, with a command that will increment the
GridLocation Property by 1. Give the Set Global Property command a shortcut of Ctrl-I (for
Increment). Note that this is the same hotkey we specified in Step 3.

Copy and Paste the first card repeatedly until you have the desired number of cards in the Deck.
Edit each card as needed with graphics or Traits.

119

9. Create a Global Key Command (GKC) for the same Map Window where the Deck is (or for the
[Module] node).

o For Matching Properties, enter DeckName = <the name of the Deck you created in Step 5>.
- For Key Command use the Hotkey for the Send to Location Trait you created in Step 6.
- For Within a Deck, Apply To, select Fixed Number of Pieces, and then enter the number of

Grid points you created in Step 2.

When clicked, the GKC from Step 9 will affect the designated number of Cards in the Deck,
triggering each onels Send to Location command. The first random Card is sent to Grid location 1,
which then increments GridLocation by 1. So the next Card is sent to Grid location 2. The process
continues until all the cards are dealt.

This process will deal one Card to each location before stopping. Instead, if you want to deal out all
the Cards in the Deck, with multiple Cards on each Grid point, in Step 9, for Within a Deck, Apply
To, select All Pieces instead.

120

Generating Random Results

VASSAL has a variety of methods for generating random results: Dice Buttons, Symbolic Dice, and
Random Text Buttons.

Dice Button

A Dice Button generates random numbers, simulating the roll of any number of dice of any number
of sides. You may add any number of Dice Buttons to a module.

A Dice Buttons has these attributes:

* Name: The name of the dice button.

* Button Text: Text for the button in the Toolbar.

» Tooltip Text: Tooltip text for the Toolbar button.

* Button Icon: Icon image appearing on the button.

* Number of Dice: Number of dice rolled.

* Number of Sides per Die: Number of sides on each die.

* Add to Each Die: Number added to the roll of each individual die.
* Add to Overall Total: Number added to the total of all the dice.

* Report Total? If selected, results will total the dice. If not, the results of each die are reported
individually (“2, 6, 3”).

* Hotkey: Keyboard shortcut for rolling the dice.
* Prompt for Values when Button Clicked: If selected, the player is prompted to enter the

number, Sides and adds for the dice rolled after clicking the button. (If selected, you will not
need to specify Number, Sides, and Adds as above.)

* Report Format: The Report Format specifies the Message Format for reporting the results:
name is the name of the button as specified above, result is the result of the roll, nDice is the
number of dice, nSides is the number of sides, plus is the modifier to each die, and addToTotal is
the value added to the total.

» Sort Dice Results: Sorts the dice results.

2 |
Button text: [Roll |
|

ooltip text: |2d6

Button icon:] Select Default |

Number of dice: |2 |
mber of sides per die: |6 |
dd to each die: [0 i
[v] Report Total?
Hotkey: |F 4| |
|_| Prompt for values when button pushed?

Report Format: [~ §name§ = $results = <§playerNameg> | 1

|0k

Cancel I Help |

121

To create a dice button,

1.
2.
3.

Right-click the [Module] node and pick Add Dice Button.
In the dialog, specify the settings for the button.
Click Ok.

Dice Properties

Dice buttons include these system Properties. <name> is the name of the Dice button.

Property Name Property Level Description

<name>_result Global Value is the result of the Die

Roll. Example: a Dice Button
named 2d6 would include a
Global Property named
2d6_result.

Symbolic Dice Button

A Symbolic Dice Button is used to define dice that use arbitrary images. When the button is clicked,
a random face is selected for each Symbolic Die that this component contains. The results of the roll
can be reported as text into the chat area, graphically in a separate window, or in the button itself.

Each button can roll any number of dice (represented by Symbolic Die components), each of which
may have any number of faces (represented by Symbolic Die Face components).

122

Name: The name of the Symbolic Dice Button.

Button Text: Text for the button in the Toolbar.

Hotkey: Keyboard shortcut for rolling the dice.

Report Results As Text: If selected, report results to the chat area.

Report format: A Message Format specifying the format for reporting text results: name is the
name of the button as specified above, resultl, result2, etc is the result of the 1st, 2nd, etc.
Symbolic Die as configured below (replace the '#' symbol with the desired number),
numericalTotal is the sum of the numerical values of the Symbolic Die rolls.

Show Result In Window: If selected, show the results graphically in a standalone window.

Window Title Format: A Message Format specifying the format for reporting results to the title
bar of the standalone window.

Show Result In Button: If selected, show the results graphically in the Toolbar button.
Width: The width of the area for displaying results graphically.
Height: The height of the area for displaying results graphically.

Background Color: The background color to be used when displaying results graphically.

Symbols rz‘
Name: |Symbols |
Button text: |Bym |
Tooltip text: |Symbols |

Hotkey: [F3 |
lv| Report results as text?

Report format: fresultt) il =$plaverName$bH ‘

l¥| Show result in window?

(Window title format: [$name$ ii

[v] Show result in button?
Width: [0
Heidght: |0 :
Background color: Select i

Ok I Cancel | Help l

To create a Symbolic Dice Button,

1. Right-click the [Module] node and pick Add Symbolic Dice Button.
2. In the Symbols dialog, specify the settings for the button.
3. Click Ok.

After you define the symbolic dice button, you must define the actual dice rolled, including the dice
faces.

Symbolic Dice
Each Symbolic Die has these attributes.

 Name: The name of the die.

* Results Format: A Message Format specifying how to report the result of this die roll. The
resulting text will be substituted for resultl, result2, and so on in the Symbolic Dice Button’s
results format: name is the name of this die as specified above, result is the text value of the
Symbolic Die Face that is rolled, numericalValue is the numerical value of the Symbolic Die
rolled.

B First Die
ame: [First Die
Results format: |§name§ = Eresuﬁs |msen | A4

ok | cancel | Hew |

To define a Symbolic die,
1. Right-click the [Symbolic Dice Button] node and pick Add Symbolic Die.

2. In the Symbolic Die dialog, specify the attributes of the die. Finally, you must define the face of
each Symbolic Die.

Symbolic Dice Faces

You must define the faces for each Symbolic Die. Each die face contains these attributes:

123

* Text Value: Text value is reported in the chat window.

* Numerical Value: You can assign a numerical value to the die face, if desired, which can be
totaled when rolled.

* Icon: The die image shown in the separate window, or in the actual Symbolic Dice button.
To define a symbolic die face,

1. Right-click the [Symbolic Die] node and pick Add Symbolic Die Face.

2. In the Symbolic Die Face dialog, specify the attributes of the die.

1
icon: Select |

‘ Ok | Cancel | Help |

To quickly create multiple identical symbolic dice, first create one die, and define all its faces. Then,
copy and paste the [Symbolic Die] node as many times as needed into your [Symbolic Dice Button]
node.

Symbolic Dice Properties

Symbolic Dice buttons include these system Properties. <name> is the name of the Symbolic Dice
button.

Name Property Level Description

<name>_result Global Value is the result of the
Symbolic Die roll. Example: a
Symbolic Dice button named
Ghost would include a Property
named Ghost_result.

Random Text Button

A Random Text Button can be used to randomly select a text message from a list defined
beforehand. For example, a button can be defined to select a random letter from the list A, B, C, or
D.

It can also be used to define dice with irregular numerical values, such as a six-sided die with
values 2,3,3,4,4,5, or dice with verbal values, such as a die with the results “Hit” or “Miss”.

One use for a Random Text Button could be to roll for results on a chart and then report the results to
the Chat Window. However, such a chart roll may not have any modifiers applied.

A Random Text button has these attributes:

124

Select Default I

Hotkey: [ALTL |
[Prompt for values when button pushed?

Report Format: |" $name$ = §resulty == <fplayerNameg> | | |
Faces

. Add I Remove I Insert |

oo m®»

[_] Faces have numeric values?

Ok Cancel Help

* Name: The name of the text button.

* Button Text: Text for the button in the Toolbar.

* Tooltip Text: Tooltip text for the Toolbar button.
* Button Icon: Icon image appearing on the button.
* Number of Dice: Number of dice rolled.

* Hotkey: Keyboard shortcut for rolling the dice.

* Prompt for Values when Button Clicked: If selected, the player is prompted to enter the
number, sides, and adds for the dice rolled after clicking the button. (If selected, you will not
need to specify Number, Sides, and Adds as above.)

* Report Format: The Report Format specifies the Message Format for reporting the results,

which may include the following report variables:

$name$

Name of the button.

S$result$

The result of the roll, either a list of the rolls, or the total of all rolls if the Report Total option
is checked.

$nDice$

The number of dice rolled.

$nSides$

The number of sides on each die.

$plus$
The modifier added to each die.

$addToTotal$
The modifier added to the total.

125

MessageFormat.pdf#top

$summary$

A summary of the roll results in the format <value> x<count>[, <value> x<count>:-] (null
where a roll generates no results).

» Sort Dice Results: Sorts the dice results.

» Faces: Specify the possible faces (results) for each die.

» Faces Have Numeric Values: If selected, enables the Adds and Report Total options.

0. Add to Each Die: Number added to the roll of each individual die.

0. Add to Overall Total: Number added to the total of all the dice.

o. Report Total? If selected, results will total the dice. If not, the results of each die are reported

individually (“2, 6, 3”).

To create a random text button,

1. Right-click the [Module] node and pick Add Random Text Button.

2. In the dialog, specify the settings for the button.

3. Under Faces, enter the value for the first face, and click Add. The value is added to the list of

results.

4. Repeat Step 3 until all faces have been added.

5. Click Ok.

Random Text Button Properties

Random Text buttons include these system Properties. <name> is the name of the Random Text

button.

Name

<name>_result

<name>_summary_

126

Property Level
Global

Global

Description

Value is the latest result of the
Random Text button. Example:
a Random Text button named
Events would include a
Property named Events_result.

A summary of the most recent
set of results (see Report
Format, $summary$ variable)

Additional Module Components

This section discusses additional module controls. These controls are not available for individual
Map Windows. Buttons associated with these controls will always appear in the Main Controls
Toolbar.

Action Button

The Action Button combines a number of different actions into a single button. When the button is
clicked, or its Hotkey is pressed, it can display a message to the Chat window, play a sound, or send
a list of Hotkeys to other components.

An Action Button includes these attributes:

Description: |Do Action
Button text: \Do Action
Button Toolip text: IDo Action

Button icon: Select ‘
Hot key: |F9 |
[v] Display Message?

i
|
|
|

[v] Play a sound?

Sound Clip: Select [tadawav

[v] Send Hotkeys?
Hot Keys

Remove I Hotkey: |F1D |
Remove | Hotkey: [F11 |

New

[Ok] Cancel [Help }

* Description: An identifying name for this button.

* Button Text: The text of the button to be added to the Toolbar.

» Tooltip Text: The tooltip text of the button to be added to the Toolbar.

* Button Icon: Icon for the Toolbar button.

* Hotkey: Keyboard shortcut for the Toolbar button.

» Display Message? Select to display a message to the Chat Window when the button is activated.
* Report Format: Message Format to report to the chat line.

* Play a Sound? Select to play a sound clip when the button is activated.

0. Sound Clip: The Sound clip file to be played. Select a file in .au, .aiff, .mp3, or .wav format.
The sound file specified in this field will be played when the action is invoked.

* Send Hotkeys? Select to send hotkeys to other components when the button is activated.

0. Hotkeys: The list of Hotkeys to be sent. Use the New button to add another key, or the Remove
buttons to remove existing keys.

To add an Action Button to the Toolbar,

127

1. Right-click the [Module] node, and pick Add Action Button.
2. On the Do Action dialog, enter the settings for the Action Button.
3. Click Ok.

The Action Button component is distinct from the Action Button Piece Trait (see page 43).

Charts Window

A Charts Window is used for displaying gameplay aids, such as charts, tables, and important game
information. Charts are accessible using a Toolbar button.

A Charts Window has these attributes:

* Name: Name of the Charts window.

* Button Text: Text for the Notes window button in the Main Controls Toolbar.
» Tooltip Text: Mouseover tooltip for the Toolbar button.

* Button Icon: Icon for the Toolbar button.

* Hotkey: Keyboard shortcut for the Toolbar button.
Sub-Components

A Charts Window is highly configurable, and can contain any combination of tabs, lists, and pull-
down menus containing individual Charts, HTML Charts, or Maps. For example, a Scrollable List
could include a Tabbed Panel, which includes individual Charts.

Additional Module Components: Game Piece Inventory Window

Chart Displays
» Tabbed Panel: A panel with tabs, each of which corresponds to a Panel or other Tabbed Pane
subcomponent. The label of the tab will be the name of the subcomponent.

* Panel: A panel that can contain Charts, HTML Charts, or Maps. Select Fixed cell size to specify a
fixed number of columns for the panel. Otherwise, the sub-components will appear in a single
row, or a single column if the Vertical layout box is checked.

* Pull-down Menu: A pull-down menu in which each menu item corresponds to a subcomponent.
The name of the menu item will be the name of the subcomponent.

* Scrollable List: A scroll list in which each entry corresponds to a subcomponent. The name of
the entry will be the name of the subcomponent.

Chart Types

» Chart: A chart is an image file depicting a game table or other useful information.

« HTML Chart: An HTML Chart is a simple HTML page. The HTML should be simple; avoid using
the <Head> tag. HTML Charts can contain hyperlinks to one another, and to files in the module,
but not to external resources.

128

* Map: A fully functioning Map Window can be embedded within a Chart. Use a Map when you
want to place counters onto a chart for bookkeeping purposes.

ombat ol x|
Name: |Close Combat| |
Image: | Select [CloseCombatChar.png

[ox [coce | e]

You cannot paste a Map Window created as a Chart to the [Module] node, or vice versa.
To create a Charts window,

Right-click the [Module] node and select Add Charts
In the Charts dialog, specify the settings for the Charts window.
Click Ok.

Right-click the new [Charts] node and pick a sub-component to add.

S

Continue adding subcomponents as needed.

Game Piece Inventory Window

A Game Piece Inventory Window organizes and summarizes the pieces in the game in a tree view
(similar to browsing a file system). You can define exactly which pieces are displayed in the
window and how they are organized.

Possible uses for a Game Piece Inventory (GPI) Window include:

* Displaying the name and location and location of pieces on a map: Each unit in an army could be
displayed by grid location with other units in its stack. Units in each stack could even be
organized in subgroups based on some Property—for example, all Depleted units in the stack
could be in a subfolder inside each stack listing.

* Tracking discarded or OdeadD units: A hidden map could be created (see page 90), and discarded
or destroyed units could be sent there (using the Send to Location Trait) instead of being deleted
from the game. Then, a GPI window could list all units sent to the hidden map, which would
give an easy to use summary of discarded units without giving access to the pieces themselves.

* Grouping and listing pieces by some Property: For example, in a personal combat game, where
combatants move in order of their Dexterity, pieces could be assigned a Dexterity property. In
the Game Piece Inventory Window, pieces could be grouped by the value of their Dexterity and
each group displayed in (ascending) order.

* A stack management tool: You can make the Command menus of pieces accessible through the
GPI window. Each piece is directly accessible—no unstacking and re-stacking of pieces is
required. As a result, for games with large, unwieldy stacks, it0s sometimes easier to use a GPI
window to access the individual pieces.

A Game Piece Inventory Window has these attributes.

* Name: The name that appears in the window title bar.

129

* Button Text: Text for the Inventory Window button in the Main Controls Toolbar.
* Hotkey: Keyboard shortcut for the Toolbar button.

» Tooltip Text: Mouseover tooltip for the Toolbar button.

Show Only Pieces Matching These Properties: The window will only summaries pieces with
the matching set of

Properties. For example: limit the pieces to a single map with the CurrentMap Property, or only
select pieces with a given value of a Marker Trait.

» Sort and Group By Properties: A list of Property names. Pieces with the same value of a given
Property will be grouped together at the same level. (Example: listing the

CurrentBoard and LocationName Properties will cause the Inventory Window to show a top-level
folder for each board and a sub-folder for each location that contains a Game Piece.)

* Label for Folders: A Message Format specifying the text used to label each folder in the tree.
The PropertyValue Property gives the value of the Property that defines its group (for example,
the board name or location name). Any Property

n Inventory

Name: |Inventary |
Button text: |Inventory |
Tooltip text: |Show inventory of all pieces |

Button icon: L Select | Default |

botkey: | |

IShow only pieces matching these properties: ‘

Sort and Group By Properties

Add [Remove | Insert | ‘

i abel for folders: |$PruperhNa\ue$ |
| Show only folders?

v Sort? B
Label for sort: |$PieceNames |] !
[Sorting method: ‘aipha {v‘

[v] Center on selected piece?

[v] Forward key strokes to selected piece?
[v] Show right-click menu of piece?

| Draw piece images?

Zoom factor: |0.25 If
Available to these sides

Add [Remove] Insert |- ‘

I Ok l Cancel I Help }

of the form sum_XXX will be replaced with the sum of Property

XXX for all pieces within that folder. For example, a Game Piece uses a Layer Trait named
Manpower, giving it an automatic Property named Manpower_Level. Using the
sum_Manpower_Level Property in the folder label will report the total manpower for all pieces
inside that folder.

* Show Only Folders: If selected, then individual pieces within a folder will not be shown in the
view.

130

» Label for Pieces: A Message Format specifying the text used to label each piece in the tree.

 Sort: If selected, then sort pieces.

o. Label for Sort: A Message Format specifying the text that sorts pieces. (Example: A piece is
named 3rd Battalion, 4th Regiment, 3rd Division; for sorting the markers $division $regiment
$battalion are used rather than the piecells name.)

0. __Sorting Method: Choose a sorting method:

Alpha sorts the inventory tree alphabetically.

Numeric sorts by the value of the first integer found, in ascending order. (Descending
order is not currently available.)

Length sorts by the string length first.

When two entries are equal for numeric and length, alpha is used for sorting. (Example:
id is the Label for sort. Three Game Pieces have the ids 'a’, 'aa’, and 'b'. Sorting by alpha
and numeric is ['a), 'aa’, 'b']. Sorting by length is ['a’, 'b', 'aa’]. Three Game Pieces have the
ids 'a3', 'b2', 'c-4". Sorting by alpha and length is ['a3', 'b2', 'c-4']. Sorting by numeric is ['c-
4','h2','a3'].)

Center On Selected Piece: If selected, then clicking on a Game Piece in the tree will
center the map on that piece.

Forward Key Strokes To Selected Piece: If selected, then any keystrokes types into the
window will be sent as key commands to the selected piece. Selecting a folder will send
the command to all pieces within that folder.

Show Right-Click Menu Of Piece: If selected, then right-clicking on a Game Piece in the
tree will display its Command Menu, which can be used to send commands to the piece.
(This can be a handy way to manage Game Pieces in large stacks.)

Draw Piece Images: If selected, the tree will draw reduced-size images of the piece at
the specified Zoom factor.

Zoom Factor: The magnification factor for drawing pieces in the tree.

Available To These Sides: The Toolbar button will only be visible to the player Sides
listed here. An empty list makes the button visible to all players.

To create a Game Piece Inventory Window,

1. Right-click the [Module] node, and pick Add Game Piece Inventory Window.

2. In the Inventory dialog, enter the settings for your Game Piece Inventory window.

3. Click Ok.

Global Key Command (Module Level)

The Global Key Command (GKC) adds a button to the Main Controls Toolbar. Clicking the button
will select certain pieces in the module and apply the same keyboard command to all of them
simultaneously.

Global Key Commands are hierarchical. A Global Key command assigned to the module can affect

131

any pieces in the module.

However, a Global Key command assigned to a map (see page 25) may only affect pieces on that
map.

Commands applied by Global Key Commands will be affected by piece ownership. If the GKC triggers a
command that is restricted by side, the action may not take place as intended when the restricted side
triggers the GKC (by button, hotkey, Turn-based Global Hotkey, or other command).

The Global Key Command has these attributes:

» Description: A description of the action, used for the button’s mouseover tooltip.
* Key Command: The keyboard command that will be applied to the selected pieces.

* Matching Properties: The command will apply to all pieces on the map that match the given
Property expression.

» Within a Deck, apply to: Select how this command applies to pieces that are contained within a
Deck.

0. No pieces means that all pieces in a Deck ignore the command.

0. All pieces means that the command applies to the entire Deck.

0. _ Fixed number of pieces enables you to specify the number of pieces (drawn from the top)
that the command will apply to.

= Tooltip text: Mouseover hint text for the Toolbar button.
= Button text: Text for the Toolbar button.

= Button Icon: Icon for the Toolbar button.

= Hotkey: Keyboard shortcut for the Toolbar button.

= Suppress Individual Reports: If selected, then any auto-reporting of the action by
individual pieces by the Report Action Trait will be suppressed.

= Report Format: A Message Format that will be echoed to the Chat window when the
button is pressed.

B Clear Fired Status

Description: |Clear Fired Status

ey Command: \'CTRL F |

atching properties: [cariire = tue 6 Fired_Active = rue
Within a Deck, apply to: [An pieces] - ‘
Button text: |Fired |
[Tooltip text: |Reset Fired Status \

Button Icon: [Select Default |

Hotkey: [ALTF |
E Suppress individual reports?

‘ Ok I Cancel | Help |

Example: Suppose you have configured some pieces to contain a Layer indicating that a Game Piece
has fired, activated by Ctrl-F and with the name Fired.

132

Give each piece the Marker Trait with Property name canFire and value true. Configure the Global Key
Command to apply to pieces whose Properties match canFire = true && Fired_Active = true. Specify
Ctrl-F as the key command. Now clicking the Global Key Command button will set all marked pieces

on the map to not having fired.
To create a module-level Global Key Command,

1. Right-click the [Module] node and pick Add Global Key Command.
2. In the Global Key Command dialog, enter the settings for the command.

3. Click Ok.

Global Options

Global Options are settings that apply to the module as a whole. If an option has a Use Preferences
Setting choice, selecting it will add an entry Preferences window to allow players to choose their
own value for the setting at game time.

* Allow Non-Owners To Unmask Pieces: By default, only the player who originally masked a
Game Piece (see the Mask Trait for Game Pieces) is allowed to unmask it. This option allows
other player to unmask a masked piece

* Center On Opponent’s Moves: This option will center a Map Window in an opponent’s move
when reading a logfile or receiving a move on the server.

* Auto-Report Moves: This option will automatically report a text description (for example, "3rd
Cavalry moves from A10 -|B11") to the chat area of the control window whenever a player
moves a Game Piece in a Map Window.

» Player ID Format: A Message Format that is used to identify players when typing chat text.

* Icons and Hotkeys: You can specify your own button icons and keyboard shortcuts for the
logfile step/undo buttons and the button that shows/hides the server controls.

£ obal Optio

IAllow non-owners to unmask pieces: |Never v

iCenter on opponent’s moves: IUse Preferences Setting | v |

Auto-report moves: [Always \v ‘

Player Id format: }Splayerhiame& ” l ‘

IStep forward button icon: i ‘ Select | Default

Lindo button icon: @ ‘ Select Default

ep forward hotkey: QPAGE_DOWN ||
erver controls button icon: AT Select Default
erver controls hotkey: (CTRL SHIFT § |

| ok | cancet | mew |

Sub-Components

You may add your own arbitrary preference settings to the global options. The different sub-
components support different constraints on the values of the preference setting. The values of
these preference settings are exposed as Properties.

133

You must save and re-load the module before these sub-components will show up in the
Preferences window

String Preference: A simple string value.

Text Box Preference: A multi-line string value.

* Drop-down List Preference: A drop-down from which the user selects from a list of specified
values.

* Whole Number: An integer value.

* Decimal Number Preference: A floating-point value.

Checkbox Preference: A true/false value.

Global Property

Global Properties can be attached to a Zone, Map Window, or Module. The [Global Properties]
node is a container for all Properties attached to the Map or Module.

When looking for the value of a Property of a Game Piece, global Properties provide default values.
If the Property is not defined on the Game Piece itself, the value will come from the Zone occupied
the by piece, the Map to which it belongs, or the Module overall, in that order.

A Game Piece can define the value of a Global Property with the Set Global Property Trait. See page 62
for more information.

Name/\/P |
nitial value: |I] |
|

Description: Victory Points
Is Numeric
inimum value; |0
naximum value: |10 \

[_] wrap around

r
| Ok | Cancel l Help |

A Global Property has these attributes:

* Name: The name of the Property.
* Initial Value: The value of the Property at the start of a new game.
* Description: Description of the Property.

* Is Numeric? If selected, then changes to the value of the Property will be restricted to integer
values.

o Minimum Value: Numeric values will be restricted to no less than this number.
 Maximum Value: Numeric values will be restricted to no more than this number.
* Wrap Around: If selected, then when incrementing this numeric Property, values will wrap

around from the maximum to the minimum.

To add a Global Property,

134

1. Right-click the [Global Properties] node, and pick Add Global Property.
2. On the Global Property dialog, enter the settings for the Property.
3. Click Ok.

Change-Property Toolbar Button

A Change-Property Toolbar button changes the value of a Global Property. Like other Toolbar
buttons, you can combine multiple buttons into a single drop-down menu using a Toolbar Menu.

* Button Text: The text of the Toolbar button.

* Button Icon: The icon of the Toolbar button.

» Hotkey: Keyboard shortcut for the Toolbar button.

* Report Format: Message Format of a text message to echo to the controls window when the
button is pressed: oldValue is the value of the Global Property prior to the button press,
newValue is the value after the button press, and description is text from the Description field
of the Global Property dialog.

Type: Defines how the Property value should change:

B Allied Victory X

Button text: |Allied Victory

Button icon: | Select
——

Hotkey: |[CTRL SHIFT v

Report format: Victory Points changes by Svalues] |Insert - |

Type: ilncmment numeric value l > hnciemem by: |§Allied Victory§ J

| Ok | Cancel l Help ‘

0. Set value directly sets the Property to a fixed value, after substituting values of Properties.

0. Increment numeric value adds a fixed value to the Property. You can specify a number, or the
value of another Property. (If you specify a Property, enter the name of the Property in $-signs;
for example, $ExamplePropertys$.)

0. Prompt user displays a dialog for the user to type in a new value.

0. Prompt user to select from list displays a dialog with a drop-down menu for the user to select
from.

To add a Change-Property button to a Global Property,

1. In the [Global Properties] node, select the Global Property to add the button to.
2. Right-click and select Add Change-Property Toolbar Button.

3. In the dialog, enter the settings for the button.

4. Click Ok. The button is added to the Main Controls Toolbar.

135

Map Window Toolbars

Each Map Window comes with a Toolbar, which includes button controls for the options you have
selected for it. Typically, each of these buttons includes a text label and icon that describes its
function. For example, if you have selected additional controls like the Zoom Tool or Line of Sight
Thread, the Toolbar for the Map Window will include buttons for these controls.

Main Controls Toolbar

The Main Controls Toolbar is displayed above the main Map Window, at the top of the screen. Every
module must have a main Toolbar; it cannot be disabled even if the game does not have a main
map window.

The Toolbar comprises these button types:

» Standard Buttons: Standard Main Controls Toolbar buttons are common to all modules and are
shown on the left — hand portion of the Toolbar. These include Undo, Step Through Log,
Connect to Server, and Retire. These buttons are configured using Global Options (see page
87).

* Module-Specific Buttons: These buttons represent components specific to the module. If a
Toolbar button is associated with a component (such as with a Game Piece Palette, Toolbar
Menu, or Map Window), the module-specific buttons will appear in the order they appear in the
Configuration Window, from top to bottom.

* Map-Specific Buttons: If the main Map Window includes any additional map options, their
buttons, if any, will be shown on the right-hand portion of the Toolbar.

Keyboard Shortcuts (Hotkeys)

If your cursor is in the Chat Window, pressing a buttonls keyboard shortcut when the piece is
selected will invoke the corresponding button, just as if the Toolbar button was actually clicked.

Hotkeys can also be invoked by automated commands. For example, a Global Key Command refers
to the Hotkey of the command that it applies. In every respect, a Hotkey invoked by automated
commands will work the same as if an actual player had pressed the key combination on a
keyboard. You can define any unique keyboard shortcut you want as a Hotkey for a particular
command. To make it harder to press them accidentally, keyboard shortcuts are usually comprised
of more than one key, such as Ctrl-X or Alt-Shift-K.

A keyboard shortcut could be composed of any number of keys pressed at once, but generally use 2
or 3, usually in combination with one of the following keys: Ctrl, Alt/Option, Shift, Meta/Command.

To make them more memorable, when assigning keyboard shortcuts, use key combinations that are
reminiscent of the command itself. (For example, Ctrl-R would be an easily remembered shortcut
for a Die Roll Button.)

Use these guidelines when assigning keyboard shortcuts.

* Avoid using keyboard shortcuts that players could type inadvertently. For example, a single
capital letter M would not be a suitable shortcut, nor would Shift-M, because players could

136

easily type either in the Chat window during ordinary conversation. However, Ctrl-M or Ctrl-
Shift-M would both be suitable.

* Be careful about assigning hotkeys to keys that invoke special functions on your computer. Caps
Lock, Backspace, Delete, Home, End, Enter/Return, and so on, are not generally suitable for use
as hotkeys. Similarly, the Function (F1-F9) keys at the top of a standard keyboard may serve as
hotkeys for various Windows or MacOS functions, and pressing them could cause unexpected
operating system functions to be invoked instead of the desired piece command.

Modifying Toolbar Buttons

You can modify Toolbar buttons in a variety of ways.

Setting Toolbar Buttons Icons to Null

Many module components, such as Dice buttons, include a default button icon. By setting a Toolbar
button icon to null, you can prevent its default icon from being displayed on the Toolbar button.
Only the button text will be shown.

To set a Toolbar button to null, when selecting the button icon, click Select, and then click Cancel.

If the icon is set to null, make sure you specify some button text, or the button will not show up at
all in the game.

Replacing Toolbar Button Text with Icons

By default, Toolbar buttons include a text label, but the text label is actually optional. If desired, you
can replace the text label completely with an icon.

Create the button icons first in an image editor. Then, for each control where a button is specified
(such as for a Game Piece Palette), in Button Text, leave blank, and in button icon, click Select and
select your button image.

You cannot use this method if the Toolbar button is intended to be included in a Toolbar Menu. You
must use a text label for the buttons so the Toolbar Menu can sort them.

The four standard buttons (Undo, Step Through Log, Connect, and Retire) will always appear on
the Toolbar even if no text label or icon is assigned to them. If both label and icon are omitted, they
will appear as very small, blank, but clickable buttons. To reduce player confusion, always assign a
text label, an icon, or both to each of these four buttons.

Hiding Toolbar Buttons

You can hide Toolbar buttons completely from player view. This is helpful if the hidden buttons are
for components that players do not need to access directly, such as for automated Global Key
Commands, or to create hidden maps.

To hide a components Toolbar button, create a new Toolbar Menu (see page 90) . Leave the button
text for the Toolbar Menu button blank. Then, under Menu Entries, enter the name of each button
you want to hide. (You can add any number of buttons to the hidden Toolbar Menu, so you can
repeat this as many times as needed to hide multiple buttons.) Click Ok. The buttons are now

137

hidden in the invisible Toolbar Menu, but will still be accessible to automated game functions.

Modifying Toolbar Button Labels

By enclosing button label text within simple HTML tags, you can use simple HTML format to specify
various colors, font weights, and sizes. Example: <html>Bold text<p>with a line
break<p>and different colors</html| would
display as:

Bold text
with a line break
and different colors

Additional Module Components: Multi-Action Button

Multi-Action Button

The Multi-Action Button combines multiple buttons in a Toolbar into a single button, which
replaces the component buttons.

Clicking this button automatically invokes the actions of all the other buttons in the order given
(from top to bottom).
A. Multi-Action Button includes these attributes:
o Button Text: The text of the button to be added to the Toolbar.
o Button Icon: Icon for the Toolbar button.
- Hotkey: Keyboard shortcut for the Toolbar button.
- Buttons: Enter the text of the buttons that you wish to invoke as a result of clicking this
button. The text is case-sensitive. They will be invoked in the order listed (top to bottom).
To add a Multi-Action button to the Toolbar,
1. Right-click the [Module] node, and pick Add Multi-Action

Button.

2. On the Multi-Action Button dialog, enter the settings for the Multi-Action Button.

3. Under Buttons, enter the name of the first button to be included in the Toolbar Menu, and click
Add.

4. Repeat Step 3 for each additional Toolbar button.
5. Click Ok.

138

B Rest and Recuperate @
Button text: |Rest and Recuperate |

[Tooltip text: ‘rest and recuperate all units |

Button Icon:
Hotkey: |ALT R |}
Buttons
I Reset Fatigue
Add ’ Frm—— l ksmatt | Return to Base ‘
‘ 0Ok] Cancel I Help ‘

Multi-Action Button Examples

* A Global Key Command is defined that resets the fatigue level of all armies on the map. A
second Global Key Command returns them to their home base. A Multi-Action Button can be
used to combine both actions into a single button.

* A Dice Button is defined that exposes its result as a Property named Damage. Some Game Pieces
are defined with

a Trigger Action Trait that compares the level of a Layer (representing armor) with the Damage
Property and deletes the piece if the level is below the Damage value. A Global Key Command
invokes the Trigger Action. A Multi-Action Button is defined that invokes the Dice Button, followed
by the Global Key Command, resulting in the automatic deletion of any units with armor less than
the random amount of damage.

* A Symbolic Dice button makes a dice-rolling sound when clicked. The Multi-Action button
combines the Symbolic Dice button with a separate Action button, which triggers the dice
rolling sound file. For best results, the Action button that plays the sound should be listed first.

Notes Window

The Notes window, accessible by a Toolbar button, enables you to save text notes for a game. The
window contains these tabs:

* Scenario: Descriptive notes on the scenario. Useful when creating pre-defined setups to
describe scenario forces, placement, and victory conditions. Scenario notes are saved when the
game is saved.

» Public: Notes that are visible to all players, and to which all players may add.
* Private: Notes that are visible only to the player who entered them.

* Delayed: This tab is for writing messages to be revealed at a later time as a safeguard against
cheating. To create a delayed message, click New and enter a name and message text. Once
created, the text of a message cannot be changed. At the appropriate time, the owning player
may reveal the text of the message to other players by selecting the message and clicking
Reveal.

139

B Notes Window
Button text: [Notes

ooltip text: [Nates

Button lcon: £ | Select I Default

otkey: |
rmc I Cancel] Help |

The number of tabs and their labels are not customizable.
Each Notes window has these attributes:

e Button Text: Text for the Notes window button in the Main Controls Toolbar.

* Tooltip Text: Mouseover tooltip for the Toolbar button.
Additional Module Components: Toolbar Menu

e Button Icon: Icon for the Toolbar button.

» Hotkey: Keyboard shortcut for the Toolbar button.
To create a Notes window,

1. Right-click the [Module] node and pick Add Notes Window.
2. In the Notes Window dialog, enter the settings for the Notes Window.
3. Click Ok.

Toolbar Menu

The Toolbar Menu component enables you to organize buttons from the Toolbar of the main
controls window or a Map Window into a single drop -down menu. Each button named in this
component will be removed from the Toolbar and instead appear as a menu item in the drop-down
menu. Items added to a Toolbar Menu are case-sensitive.

* Button Text: The text of the Toolbar Menu. Clicking the button will reveal the drop-down menu.
If left blank, the Toolbar Menu, and any buttons on the menu, will be hidden.

* Button Icon: Icon for the Toolbar Menu button.

* Hotkey: Keyboard shortcut for revealing the drop-down menu.

* Menu Entries: Enter the text of the buttons that you wish to move to the drop-down menu. The
menu item will have the same text. If the button uses an icon, the menu item will also use it.

B Actions [zl
Button text: |Actions |
(Tooltip Text: [Dhsplays Action Options |

Hutton lcon: Select

Hotkey: | |
Menu Entries
| |Remove Info Counters
Add I Remove I Insert ‘ Un-Disrupt
| ok | cancet | new |

140

To add a Toolbar Menu,

1. Click the [Module] node and pick Add Toolbar Menu.
2. On the Toolbar Menu dialog, enter the settings for the Toolbar Menu.

3. Under Menu Entries, enter the name of the first button to be included in the Toolbar Menu, and
click Add.

4. Repeat Step 3 for each additional Toolbar button.
5. Click Ok. The Toolbar Menu is displayed on the Toolbar.

Turn Counter

A Turn Counter can be used to track any intervals you define, such as turns, phases, rounds,
segments or days. To mark the progress of the game, players can advance the turn forward or
backward, or, optionally, jump directly to a selected turn.

A Turn Counter is defined as a series of nested levels to any level you desire. Advancing the turn
moves the deepest level forward. When a child level wraps around, the next child level under the
same parent advances forward. When the last child level has wrapped around, the parent level
advances forward.

For example, a level representing the Month may contain a level representing the Day, which
contains a level representing time of day (Morning or Evening). Advancing the turn counter moves
the game from Morning to Evening (deepest level), then to Morning of the next day, evening of the
next day, and so on.

[Tum i
Name: [Turn |
Button text. [Tum J
Button |com: |, Select Default

Button Tooltip: [Show Current Turn

Show/hide Hotkey: [aLT T

Next Turn Hotkey: !N.T N

Previous Turn Hotkey |ALT P

Turn Name Format: |$timeOfDay$ of $currentMonthd §curremDayith ”

Report Format! It is now $newTurn$ |

Turn Label Tooltip Text: |
Turn label Display length (Fixels, 0 for variable): |22p
ok | cancel | Hew |

Although there is no programmatic limit to the number of nested levels you can use in a Turn Counter,
there may be a practical one. Tracking each individual phase, sub- phase and segment of some
complex games could mean that the Turn Counter is constantly being clicked to advance the game,
which may be a burden during game play.

The Turn Counter controls can be docked into the Main Controls Toolbar, or can be opened in a
separate window that is shown or hidden by a button on the Toolbar. Whether the controls are
docked is controlled by the player’s preferences.

A Turn Counter includes these attributes:

* Name: A name for display in the Configuration Window.

e Button text: The text of the Toolbar button to show or hide the controls when un-docked

141

Button Icon: Icon for the Toolbar button.
Tooltip Text: The tooltip text of the button.

Show/Hide Hotkey: Keyboard shortcut to hide or show the Turn Counter window when un-
docked.

Next Turn Hotkey: Keyboard shortcut to advance the Turn Counter one step.
Previous Turn Hotkey: Keyboard shortcut to return the Turn Counter to the previous step.

Turn Name Format: Message Format to format the display of the current turn. All module-level
Properties will be substituted. In particular, the Properties exposed by any child Counters or
Lists can be used. In addition, the special Properties levell, level2, etc. can be used to represent
the values of the active Counter or List within the Turn Counter. For example: If the Turn
Counter contains a Month level, which further, contains a Day level, then levell gives the value
of the Month and level2 gives the Day.

Report Format: Message Format to display a message in the Chat Window whenever the turn
changes.

Turn Label Tooltip Text: Tooltip text for the Turn Display.

Turn Label Display Length: Set the number of pixels wide the turn display label should be, or
use 0 to let it float to suit the current turn display.

Types of Turns

Turns can be of two types: Counters and Lists. Both types can freely be nested in one another, in
any combinations.

Counter

A Counter is a numerical level that advances by incrementing the number by a fixed value. It can
optionally loop when it reaches a maximum value. An example of a Counter would be Turn 1, Turn
2, Turn 3, and so on. A Counter has these attributes:

142

Description: A name for display in the Configuration Window.
Property Name: The name of the global Property that will hold the value of this level.

Turn Level Format: A Message Format that gives the value of the levell, level2, etc. Property
for use in the Turn Counter’s Turn Name Format Property.

Start Value: The initial (and minimum) numeric value.
Increment By: The amount by which the numeric value increases when the level advances.
Loop: If selected, the level will return to its starting value after reaching the maximum value.

Maximum value: The maximum value at which the level will loop.

| pay ol x|

Description: ‘Dav

Turn Level Farmar ($levelx$): l%’_‘ |
Start Value: [1

Increment By: |1

[¥] Loop?

Maximum value: [30]
" Ok I Cancel | Help |

List

A List is a level that cycles through a specified list of text strings. An example of a List would be
Spring, Summer, Fall, and Winter.

| Month olx|
Description: |Month
Froperty Mame: |current|‘v10mh

Turn Level Format ($levelx$): |

List of [tems

“January

Add | Remove | Insert |Feer3N

(L

[] Allow players to hide items in this list?
[] Allow players to change which item goes first?
| Ok | Cancel | Help |

Description: A name for display in the Configuration Window.

Property Name: The name of the global Property that will hold the value of this level.

Turn Level Format: A Message Format that gives the value of the level Property for use in the
Turn Counter’s Turn Name Format.

List of Items: A list of text strings that the level will cycle through.

Allow Players To Hide Items In This List: If selected, then player will be allowed to disable
items in this list at game time.

Allow Players To Change Which Item Goes First: If selected, then players will be allowed to
change which should

be the beginning item in the list, i.e. the item at which the parent level will be advanced. Example:
If a List represents Sides in a game, but the order in which Sides move is not always fixed.

Additional Module Components: Turn Counter

Turn Counter Properties

Lists and Counters both allow you to define the name of the global Property used to hold the value
of the given level, in the Property Name entry box.

For example, if you define a Counter that tracks turns numerically, you could enter currentTurn in
Property Name.

Turn-Based Global Hotkey

A Turn-Based Global Hotkey automatically fires a key sequence whenever a certain state of the

143

Turn Counter is reached. The Hotkey can trigger the firing of another command or button, such as a
Global Key Command, exactly as if a player had typed it in.

For example, when the Repair Units phase is reached, a Turn-Based Global Hotkey fires that
corresponds to the keyboard shortcut of a Global Key Command that removes all Damage counters
from pieces on the map.
A. Turn-Based Global Hotkey has these attributes:

o Description: A name for display in the Configuration Window.

- Global Hotkey: The keyboard shortcut to fire. The program will respond exactly as if one of
the players had typed this key sequence.

- Match Properties: A Property Expression that specifies when to fire the Hotkey. If the
expression is true after any level of the Turn Counter advances, the Hotkey will fire.

o Report Format: A Message Format that will be echoed to the Chat Window when the Hotkey
fires.

___Remove Fatig ol
Description: IF‘.emuw Fatigue |
Global Hotkey: [CTRL SHIFT F |
Match Properties: [timeOfDay = Morning |

Report Format: ‘F‘.emom’ng Fatigue [linsen |'-'J

| ok] Cancel] Helﬂ

Actions initiated by Turn- Based Global Hotkeys will be affected by piece ownership. If the Turn-Based
Global Hotkey triggers a command that is restricted by side, the action may not take place as intended
when the restricted side clicks to advance the turn.

For example, Side A in a game represents a group of camouflaged units, which can be hidden (Masked)
from Side B at the start of each turn. Each of Side AUs pieces includes a Mask trait which only Side A
can use. To make things easier, you create a Turn- Based Global Hotkey that triggers a GKC, which
causes Side Als pieces to automatically reset their Masks at the beginning of each turn. When Side A
clicks to advance the turn, the pieces are masked as intended. However, when Side B clicks to advance
the turn, the pieces will not be masked automatically, since Side B Is restricted from using the piecesO
Mask trait.

Creating a Turn Counter
To create a Turn Counter,

1. Right-click the [Module] node, and pick Add Turn Counter.
2. In the Turn dialog, enter the values for the Turn Counter.

3. In the Configuration Window, right-click the new [Turn Counter] node and do one of the
following:

o Select Add Counter: Then, in the Counter dialog, enter the settings for the first level
Counter.

o Select Add List: Then, in the List dialog, enter the settings for the first level List.

4. Optionally, to nest a level under the first one, select either the new [Counter] (or new [List])

144

node, and then repeat Step 3 for the next level.
5. Repeat Step 4 for all further nested levels.

6. Optionally, right-click the [Turn Counter] node and pick Add Global Hotkey. In the Global
Hotkey dialog, enter the settings for the Global Hotkey, then click Ok.

Tracking Numerical Quantities with a Turn Counter

You can adapt Turn Counters to track a variety of numerical quantities for the game or for
individual players. For example, if players in the game must keep track of their Resource Points
used to purchase units, you could use a Turn Counter for each player to track Resource Point levels.

In general, to track numerical quantities, you will use a Counter component, and tracker
components will not be nested (as they might be with regular Turn Counters).

To create a quantity tracker,

1. Create a Turn Counter.
2. Create a Counter component named for the quantity you wish to track.

3. Set the Start Value of the Counter to the starting level for the game. (If each player began with
40 Resource Points, then you would enter 40.)

4. Choose any other settings required for the Counter.

5. If each player will need such a tracker, copy/paste the newly created tracker as many times as
needed to the [Module] node, and edit each one appropriately.

Automating an Action to Happen Regularly

Using the Turn-Based Global Hotkey, you can automate a global action to happen on a regular basis,
each time the Turn Counter is advanced to a particular level. For example, you have a module
where all disabled Infantry units are reset at the end of the Turn, during the End Phase. Since this
must occur every turn, automating this will make gameplay faster.
1. Add a command to each unit that will reset its status. Assign this command a keyboard shortcut.
2. Add a Global Key Command to the module.
a. In Global Key Command, enter the keyboard shortcut you assigned in Step 1.
b. In Hotkey, assign a Hotkey to the GKC. (This is the keyboard shortcut for the GKC itself).
3. On the Turn Counter, add a Turn-Based Global Hotkey.
c. _ In Global Hotkey, enter the Hotkey of the Global Key Command you assigned in Step 2b.
d. _ For Match Properties, enter the turn or phase where the command will be applied. (In

the example, this would be Phase = End.)

Now, each time you advance the Turn Counter to the appropriate level, the Global Hotkey will
trigger the GKC, which will apply its command to all pieces.

145

Pre-Defined Setups

Many games include scenarios, where different maps and pieces may be used to simulate diverse
game situations. For example, a World War II game could have a scenario for the Battle of the Bulge
and another for the Battle of Midway. Each is played using the same module and rules, but would
use different maps and counters.

In VASSAL, scenarios are represented by setups, which are preset configurations of maps and
pieces. Setup files are actually just saved games (.vsav files). You create a setup by setting up the
game as appropriate for the scenario, and then saving the file.

VASSAL saves the current game arrangement, including all boards, placement of pieces, and
current turn. You can then include the saved game in a module.

If a module includes pre-defined setups, players will be prompted to select a setup when the
module is launched. They can also select scenarios from the File menu.

About Saved Games

A saved game is a snapshot of the module at the time it was created. This is particularly true of the
Game Pieces used in the setup:

* Pieces in a saved game will only include Traits that were part of the piece at the time the saved
game was saved.

Changes to a module are not reflected in existing Saved Games.
* Decks and At-Start Stacks will only include their contents at the time the game was saved.

If you later modify the Game Pieces to add or remove Traits (in any way, including Prototypes), then
the Game Pieces in a setup file created before the revision will not be updated to reflect the new
Traits. Instead, they will continue to reflect the Traits present on each piece at the time it was
created. The same applies of Decks or At-Start Stacks: if you modify them (add, edit, or remove
pieces) after the game is saved, the saved game will not show the additions or revisions.

Because setup files reflect the game pieces at the time they were created, creating them should be
the very last task you perform when creating a module. Only create the setup file when you are
certain you will not be making any more edits or revisions to pieces or other game components, or
you may be forced to create the setup file all over again. (The Saved Game Updater tool can address
this issue. See page 97 for more information.)

If you make updates to your module, make sure you also update any Saved Games associated with
it. (See I0m Not Seeing My Changes on page 110.)

Creating a Setup File

Create a setup file as a saved game (.vsav) file. Always save the game when logged in as an
Observer, to ensure that players can freely select any Side to play. If you do not save the game as an
Observer, then when the game is launched, the Side you saved the game as will not be visible for

146

players to select.

To create a setup file,

1.
2.

w

N o e

Launch the module.
Set up the scenario for the game as if you were playing it and take the first player(s side.

If the game includes different Sides, click Retire. Select another Side to play, then set up pieces
for that Side.

Repeat Step 3 until all Sides have been set up for game start.
Click Retire (again).
On the Retire dialog, click Become observer.

Optionally, if the module includes a Notes window, enter any scenario notes on the Scenario
tab, and then click Save.

Click File | Save Game. Save the game as a .vsav file.

The .vsav file you have created can now be added as a Pre-defined Setup, per the below
instructions.

The Pre-Defined Setup Menu

The pre-defined setup menu can include two types of item: links to scenario files, and parent
menus.

» A scenario is represented by a .vsav file you have included in the module.

* A parent menu is an organizing tool. If you have a number of scenarios, you can group them in

one or more parent menus to help organize them for players.

To add a predefined setup or parent menu to a module,

ame; |1939

[_] Contains sub-menus?

[¥] Use pre-defined file?

Saved Game: | Select |1939scensa |
| ok | cancel [Help

= WMo

Create a setup file as outlined above.
Right-click the [Module] node and click Add Pre-defined Setup.
In Name, enter the name of the scenario or parent menu.
Do one of the following:
a. If this is a parent menu, select Parent menu?

b. If this is a scenario, select Use pre-defined file? Then, click Select and browse to the
location of the scenario file you created in Step 1.

Click Ok.

147

Permitting New Scenarios

If you want to allow players to create their own scenarios at game start, remember to include a
blank menu item (named Create New Scenario or something similar). Select Use pre -defined file,
but do not select any scenario file. Save the menu item. When the players log in, the blank menu
item will be displayed with other scenarios. Selecting it will permit the players to create a brand
new scenario when the module is launched.

The Saved Game Updater Tool

When a game is saved using one version of a VASSAL module, and then re-opened using a later
version, the Game Pieces retain their original behavior, even if the piece has changed in the Game
Piece Palette. This is necessary for modules to be backward compatible with old saved games. The
Saved Game Updater tool enables you to update a game saved with an older version of a module
to use the corresponding piece definitions in the current version. The intended use is to save work
when creating Pre-Defined Setups for a new module version.

The Updater works by attempting to match each piece in a saved game to the component in the
Game Piece Palette or Deck that it came from. The name of the piece in the saved game is matched
with a component in the Game Piece Palette.

For example, a Game Piece named "4-6-7" may be defined in a list called "Squads" within a drop-
down menu named "German" inside a tab named "Ground Units". The Saved Game Updater notes
the component in the Game Piece Palette where the "4-6-7" piece was defined in the old module
version, then looks for the same component in the new module version (that is, the "Ground Units"
| "German" | "Squads" | "4-6-7" component). If it finds the component, it will replace any "4 -6-7"
piece in the saved game with the piece from that component, matching the value of Text Labels,
Layer activation, rotation, and other attributes, to the best of its ability.

It is likely you will have to load the updated saved game and make some adjustments to individual
pieces, as the process is not perfect.

Because the Updater tool relies on matching piece names with component names in the Module
Editor, it will not work well if many different kinds of pieces share the same name, or if the
structure of the Game Piece Palette has changed significantly between module versions.

To update a saved game using the Saved Game Updater tool,

B update Saved Games

Module version of saved games: 151

i Import GamePiece info l Export GamePiece info ‘
1-Fat Lipki.sav

[Saved Games:2-Hedgerows and Hand Grenades.sav
Choose | 3-Bonfire of the NKVD.sav

‘ Update games l Help | Close ‘

1. Back up your saved game files to a separate location.

2. Open the earlier module version in the Module Editor.

3. Select Tools | Update Saved Games | Export Game Piece info.

148

® N e g B

10.

Save the info to a file on disk.

Close the Module Editor.

Open the later module version in the Module Editor.

Select Tools | Update Saved Games |Import Game Piece info.

Select the info file saved in step 3. The module version of saved games field will list the earlier
module version number.

Click Choose and select any number of saved game files in the same folder to update.

Click Update Games to overwrite the files.

149

Help Menu

You can supplement your module with a variety of informational files and settings. Help files and
Tutorials can be useful in explaining the functions of a complex module to your players.

The Help menu in the main control window contains general informational files for your module.
You may add more help files specific to the module you are creating. Help files in a module may
include information such as game rules, descriptions of how to use particular module features,
setup instructions, copyright notices, or other useful text.

Help menu items can be any of these types:

PDF Help File

From VASSAL 3.5 onward you can add a PDF file directly to VASSAL. Selecting the menu opens the
default browser on the user’s machine with the PDF file you specified. A PDF Help file has these
attributres:

* Menu Command: The menu item to be added to the Help menu.

* PDF file: Click the select button to select a PDF file from your computer. It will be copied into
the module and then displayed when the user selects the menu item.

HTML Help File

The HTML Help file component adds an entry to the Help menu. Selecting the menu opens the
default browser on the user’s machine with HTML content that you specify. An HTML Help file has
these attributes:

* Menu Entry: The menu item to be added to the Help menu.

* Contents: A folder on your local file system. The contents of the folder will be copied into the
module and expanded onto the user’s machine when the user selects the menu item.

The folder can contains any number of sub-folders and can include image data, style sheets, and
other associated content. Be sure that any HTML content makes use of relative URLs.

» Starting Page: The file within the Contents folder that the user’s browser will be pointed to.
Normally, this is an HTML page.

| __RefManual alx|

Menu Entry. EF‘.efemnu_:e Manual - D ==

Contents: Select) |/home/rkinney/VASSAL finstall-2.9/ReferenceManual
Starting Page: |index.htm

I Ok l Cancel [Help

0. You can launch a PDF file by setting the Starting Page to a local PDF file.

0. You can launch an external URL in the user’s browser by specifying the external URL as the
Starting Page, and leaving the Contents set to null.

150

To add an HTML Help file to the module,

1. Create and save the HTML and other files in your choice of file editor (such as an HTML
authoring tool).

2. Open your module in the Module Editor.

3. In the Configuration window, right-click the [Help Menu] node and pick Add HTML Help File.

4. Enter values for Menu Entry, Contents folder, and Starting Page, and then click Ok.

Plain Text Help File

The Plain Text Help file component adds an entry to the Help menu. Selecting the menu displays a
new window with the contents of a plain text file.

The text file can include any text you like. Some examples include:

* A list of design credits and acknowledgements.
¢ Instructions on how to set up or use the module.
* Rules or rules summaries.

» Reference information.
A Plain Text file has these attributes:

* Menu Entry: The menu item to be added to the Help menu.

» Text File: A file containing the contents of the window to be displayed. Create and save the text
file in your choice of text editor before adding it to the module.

To add a Plain Text help file to the module,

1. Open your module in the Module Editor.

2. In the Configuration window, right-click the [Help Menu] node and pick Add Plain Text Help
File.

3. Enter values for Menu Entry and Text File, and then click Ok.

About Screen

The About screen will display the currently installed versions of the VASSAL engine and module.
This helps players make sure they are running compatible versions.

A new module uses a default image for the About screen. However, you may use any image you
wish as an About screen for your module.

2 About Vassal
Menu Entry: |About Vassal

|mage:| Select |13—Help Menu-About Screen.

ok | Ccancel | Help |

151

The image for the About Screen is also displayed in the Welcome Wizard when the module is first
launched.

The About Screen has two attributes:

* Menu Entry: The Help menu item to invoke the screen.

* Image: The image displayed when the screen is invoked.
To change the default About screen,

1. Create the new About image in your choice of image editor.

2. In the Configuration window, right-click the [Help Menu] node and pick Add About Screen.

3. Enter the values for each setting, and then click Ok.

Tutorials

A Tutorial is a short walk-through of your module, played back live by new players. It can include a
demonstration game setup, a sample turn sequence, or show the use of module functions.

B Introduction Tutorial E
enu Text|Introduction Tutorial \

fogfile Select |tutorial log |

[¥] Launch automatically on first startup

iAuto-launch confirm message{Load the tutorial?

[Welcome message\H\l the "Step forward” button in the toolbar to step through the tutorial
ok | cancel | Hep |

A Tutorial is really just a logfile that players can step through, reviewing each move in turn, exactly
the same as using a VASSAL PBEM log.

Plan your Tutorial to show the most important aspects of gameplay, before adding it to your
module.

The Tutorial menu item includes these attributes:

* Menu Command: The menu item under the Help Menu.

* Logfile: The logfile that players will step through when they select the corresponding menu
item.

* Launch Automatically On First Startup: If selected, then players will automatically be
prompted to run the tutorial the first time they load the module.

* Auto-Launch Confirm Message: Provides the text in the yes/no dialog that is displayed to the
player when they load the module for the first time. Answering Yes will load the tutorial logfile.

* Welcome Message: The message that displays in the main controls window chat area when the
tutorial is loaded.

To add a tutorial to the module,

1. Launch the module for which you wish to create a tutorial.

152

. In the VASSAL player, click File | Begin Logfile.

. Play one or more turns of the game, changing Sides as needed. (You can also add explanatory
text in the Chat window.)

. Click File | End Logfile. This ends recording of your logfile.
. In the Module Editor, in the Configuration Window, right-click on Help Menu and choose Add
Tutorial.

. In the Tutorial dialog, enter the other settings for your tutorial replay, as desired. (In Logfile,
select the logfile you recorded previously.)

. Click Ok. The tutorial is added to the modulels Help menu.

153

Additional Topics

This section describes some advanced module design topics. It presumes knowledge of the design
procedures discussed earlier.

Importing Custom Classes

If youlre familiar with Java programming, VASSAL enables you to write and plug your own Java
classes into a module. As an open- source project, the VASSAL engine package contains the source
code for the core engine. The VASSAL libraries package contains additional .jar files you will need
to compile and run the program. The main class for the application is named org.Vassalengine.Main
and resides in Vassal.jar.

To import a Java class for a particular component,

1. Right-click the component you wish to import a Java class for.
2. Pick Add Imported Class.

3. Enter the name of the class, and click Ok.

A complete programming tutorial, which presumes a level of Java programming skills, is available
at https://vassalengine.org/wiki/Programming Tutorial.

Module File Structure

A module (vmod) file is simply an archive file using ZIP compression. It can be easily
decompressed using any application that handles ZIP files, including WinZip or the MacOS Archive
Utility, to view or extract the files inside. If you need to have a look at a file inside a module, simply
unzip the module.

For some utilities, you may need to change the file extension from .vmod to .zip in order to be able to
unzip it. You can change it back to .vmod when the process completes. Make sure that your operating
system is set up to display file extensions.

Because a module file is itself a ZIP file, when you packaging or publishing a module, do not zip the
module file. For one thing, the savings due to compression is minimal. In addition, compressing a
ZIP file can cause confusion when unzipping, as some ZIP utilities may unzip the base ZIP file and
any included ZIP files, leaving only the component files behind.

Extension (.vimdx) files are also ZIP files, like module files.

File Components

A module file contains the following components:

* BuildFile: The BuildFile is a descriptor file containing all of the modulells component settings,
in plain text format. You create and modify the BuildFile automatically when you edit a module
in the Module Editor.

154

https://vassalengine.org/wiki/Programming_Tutorial

o. The BuildFile can be opened in any text editor. Each component is specified as a text string,

along with values for the componentls settings. However, although you can use a text editor to
open it, the BuildFile is not particularly legible for humans.

Some advanced VASSAL module designers prefer to edit the BuildFile manually, in a text editor.
However, the structure of the BuildFile is complex and intricate. Editing it directly is *not*
recommended. A single typo or misplaced comma can ruin your whole day.

0. ___ In general, use the Module Editor to make changes to your module; these changes will be
automatically reflected in the BuildFile.

= ModuleData File: The ModuleData file contains the modulells basic settings. Like the
BuildFile, it should not be edited directly.

Images Folder: Contains all of the modulels images: maps, pieces and other images.

= Sounds Folder: Includes any sound files associated with the module (from Play Sound
Traits or Action Buttons).

= Help Folder: Contains HTML help files, if any.

= Additional Files: Some modules may contain additional files, such as a Readme.txt file.

Reducing Module File Size

The module design process can lead to module files including unnecessary or obsolete files. Large
files are slow to download and unwieldy to distribute. As a result, once the design process is
complete, you may wish to reduce the file size of your module.

The vast majority of a module(s file size is usually caused by the image files included in the module.
You may wish to try the following in order to reduce overall file size:

Re-scale your game graphics to a smaller size. A large 5000x5000 pixel map may be more
manageable when rescaled to 2500x2500 pixels. Use your favorite image editor application to
accomplish this.

Delete unnecessary files from the module, such as unused images or obsolete text files.

Deleting Unnecessary Files from a Module

To reduce file size, you can delete unnecessary files from a module. To accomplish this, you will
require a utility capable of unzipping and re-zipping files.

To delete files from a module,

1.
2.

Create a backup of your existing module in the same directory as your existing module.
Unzip the original module using the unzip utility of your choice.

Open the resulting directory. There will be a file called BuildFile, a folder named Images, and
some other bits and pieces. (This is the Oroot levell of your module.)

Switch to the Images directory and delete all the obsolete image files.

Repeat Step 4 for any other unneeded files, such as text, sound, or help files.

155

10.

Move up one level, to the directory that contains the BuildFile (the Oroot0 level).

Select all these directories and files, and zip them using your zip utility. You should now have a
ZIP file in the same directory as the BuildFile.

Rename the new ZIP file to the original name of your module: <module name>.vmod.

Drag the new ZIP file up one directory level; that is, to the same directory where your backup is.
The entry for this module in your Module Manager will now correspond to your new, cleaned-
up module.

Using the Module Manager, launch the re-zipped module in VASSAL and test it, to make sure
you didn’t delete any images or other files by mistake. Errors will be displayed in the chat
window. Test and check the game thoroughly. If you get an error, use your backup to recover
whatever files you deleted and repeat the process from Step 2.

Ensure that you re -zip the module at the root level (this is the level where you see BuildFile, the
Images folder, and other files) . Do not zip the folder that contains these items. If you re-zipped the
wrong level, when you open the file in VASSAL, it will return 'Invalid VASSAL module.’

Importing an Aide de Camp II Module into VASSAL

VASSAL includes a tool that enables you to convert modules made for the application Aide de Camp
II (ADC2) into VASSAL module format.

The import process creates maps and pieces and a basic module structure. The tool does not parse
any rules or automation in ADC2 modules, so unless the module is extremely simple, the import
process will likely require some manual editing in VASSAL after completion to complete the
conversion.

To import an ADC2 module,

1
2.
3.
4.
3.

In the Module Manager, pick File | Import Module.

Browse to the ADC2 module you wish to import.

Select the .OPS file for the module.

Click Open. The module is converted into VASSAL format and displayed in the Module Editor.

Edit the module as needed and save as a .vmod file.

Translations

VASSAL supports two sets of translations: module translations and translations of the VASSAL
engine.

Translating a Module

VASSAL modules are not localized. VASSAL relies on the generosity of module designers (or players)
to translate modules into other languages. If you are a fluent speaker of a language other

156

Languae: ?_l‘fl_lp:i:i‘ A v anstation

than English, you can translate the text strings in your module into the language of choice, and save
the translated strings. When a player launches the module, VASSAL will use the translation
appropriate for the locale of the user’s computer.

A module can include translations into multiple languages.

To complete the translation process, first, you specify the language (or languages) into which the
module has been translated. Then, you create the actual text strings to be included in the
translation to that language.

To specify languages for a module,

1. In the Configuration Window, right-click the [Translations] node and pick Add Translation.
2. In the dialog, in Language, select a language from the drop-down list. Optionally, in Country,
select a country.

To include strings for one of the specified languages,

1. Right-click the [Module] node, and pick Translate.

2. In the Translate Module dialog, in Language, select one of the languages from the drop-down
list. Any translations you make will be considered to be in this language.

3. In the top pane, module components are shown in a tree view similar to that of the
Configuration Window. Module components with text that needs translating are shown in red.
Select a component to translate.

4. In the bottom pane, text strings requiring translation are shown in red. Select one.

5. Under Translation, double-click the empty box. Then, enter the translation for the selected
string into your chosen language.

6. Repeat Step 5 for any other strings.

7. Select a new component to translate from the top pane. Repeat Steps 3-6 for this and any other
components.

8. Click Ok.

Module translations are not shown in edit mode. The translated strings will only be displayed when
the game is played.

157

I Transiate VASSAL)

iate] angeangen

Log File after a Repiay? jetangen
29 Date) angsiangen

Log File nefore 3 Repiay? |

Help || Load. || Sine Cancel

Translating the VASSAL Engine

You can also supply translations for the VASSAL engine.
To create a VASSAL translation file,

1. Launch VASSAL from the command line, with the - translate switch.

2. In the Translate VASSAL dialog, select the language you are translating into, and optionally,
select a country.

3. For each string you wish to translate, under Translation, double-click the empty box. Then,
enter the translation for the selected string into your chosen language.

4, Click Save.

A translation file is saved in the VASSAL home directory. The next time you start VASSAL, it will
look in the home directory for a translation file matching your computers locale and display the
strings.

When your translation file is complete, emalil it to support@vassalengine.org. It will be bundled
with the next VASSAL release for use by other players worldwide!

158

mailto:support@vassalengine.org

Creating Module Extensions

An extension is a file that adds features or components to a module. For example, for the fictional
game “World War II”, the basic module might include 6 maps, each one the scene of an important
European battle. Later, the “North Africa” extension adds 2 more maps that show the scenes of two
important North African desert battles, as well as counters representing new tank models. When
the extension is loaded, players can select from the older maps or the newer maps, and use the new
counters as well.

A module can include any number of extensions.

You should be familiar with creating and editing modules before attempting to create or edit an
extension.

What an Extension Can Do

An extension can add functionality or components to a module. Here are some examples of what an
extension could add to a game:

* New Game Pieces (units, cards, or any other pieces).

* New Cards to a Deck.

* New maps or boards.

¢ New tools, such as die rollers or charts.

* New Prototype Definitions (see Extension Prototypes in the Base Module, below).

What an Extension Canlt Do

An extension cannot do any of the following:

Add new Traits to Game Pieces already defined in the base module.

* Remove, disable, or modify existing components from the base module (such as boards, buttons,
and other controls).

* Modify, replace, or override Prototype Definitions from the base module.

Add new Sides.

Using the Extension Editor

An extension is created using a special editor called the Extension Editor, which is similar to the
Module Editor.

In the Extension Editor, the process of adding components is the same for extensions as it is for
modules: right-click on a node of the tree, select the component you wish to add, and specify its
settings. Note that in the Extension Editor, the components of the main module are displayed, but
are disabled, indicating that they may not be modified or deleted by the Extension Editor.

159

Extensions, and components defined in them can refer to global items defined in the base module,
such as Prototypes, Global Properties, Global Key Commands, and Global Hotkeys. For example, if
the base module included a Prototype definition called Zombie, pieces created in the extension
could be assigned the Zombie Prototype. (This is a two-way street. See Extension Prototypes in the
Base Module on page 107 for more information.)

Extensions are given the extension .vmdx. Like modules, they are ZIP files and can be
decompressed using any ZIP-capable utility.

Extension Properties

Each extension has the following Properties.

e Version Number: Revision number of the extension.

* Description: Brief description or title of the extension. This will be displayed in the Module
Manager.

» Extension ID: An extension ID links counters in existing save games to the counter definitions
in the extension. If this ID is changed, then the Saved Game Updater may not be able to update
the counters from existing save games.

Universal Extensions

Although extensions are usually intended to enhance a specific module, it is possible to create a
universal extension that can be used by any module.

For example, you could create a universal extension named Percentile_Dice includes a die roller
which randomly generates a number from 1-100. You could then use this extension for any module
that requires random numbers be generated in such a range.

To create an extension,
1. In Module Manager, right-click on the module for which you wish to create an extension. Then,
select New Extension. The Extension Editor opens.
2. On the Extension Editor Toolbar, click Extension Properties.
3. In the Extension Properties dialog, do the following:
a. Enter a version number and description of the extension.
b. _ If desired, enter an Extension ID.

c. __ If you wish this extension to be used with any module, select Allow loading with any
module.

d. Click Save to save the Properties.
4. In the Extension Editor, add or edit components as desired.

5. On the Extension Editor Toolbar, click Save. Save your extension with the suffix .vmdx.

To edit an extension,

160

1. In Module Manager, select the extension you wish to edit. Right-click and pick Edit Extension.
The Extension Editor opens.

2. Add or edit components to the extension as desired.

3. On the Extension Editor Toolbar, click Save. Save your extension with the suffix .vmdx.

Copying, Pasting and Editing Module Components

One useful technique for adding new components to an extension is to copy and paste a similar
component from the base module into the corresponding node of the Extension Editor, and then
edit the copy as required. Although you cannot change the base module, you can utilize its
components in the Extension Editor. (The same strictures apply for pasting as they do for the
Module Editor; you can only paste like to like. For example, you could paste Game Pieces from the
module palette into an extension palette, but you could not paste a Game Piece copied from the
module to a turn counter in the extension.)

Integrating Extensions

Although an extension cannot itself modify the components in the base module, itds sometimes
useful to manually modify the base module, in the Module Editor, to make room for extension
functionality and improve integration.

Extension Toolbar Menu Items

An extension may add new buttons to the base modulels Toolbar. Ordinarily, these new buttons
would be displayed separately from the module Toolbar buttons. However, if want to add them to
an existing module Toolbar menu, simply add the names of these buttons to the Toolbar Menu
component of the main module, in the Module Editor.

For example, the main module includes a Toolbar Menu named Maps that includes the gamels 3
basic maps: Map 1, Map 2 and Map 3. You later create an extension with Map 4. In the base module,
in the Module Editor, you would add Map 4 to the Toolbar Menu component. Now the Toolbar
Menu would include all of the gamels maps (1 through 4). However, the Map 4 menu item would
not be displayed until the Map 4 extension is loaded.

Extension Prototypes in the Base Module

Prototypes in the base module are usable by pieces in the extension, and Prototypes defined in an
extension will be available to pieces in the base module when the extension is loaded. This enables
you to add optional functionality to the base module, which would be activated by loading an
extension, and requires that you edit the base module.

For example, we add a Prototype trait called Extensionl to every counter in a base module.
However, no Prototype named Extensionl is defined in the base module. When a user uses the base
module with no extensions loaded, the Prototype Trait Extension1 is ignored because the definition
does not exist in the module, and it has no effect on game play.

We then create a Prototype Definition named Extensionl in an extension with the appropriate

161

Traits. When the base module is used with the extension, all counters defined in the base module
will now have the extended Traits defined in the Extension1 Prototype.

Testing Your Extension

If the Extension Editor is open, launching new games will launch the base module with the
extension loaded (automatically activated), enabling you to test the extension like you would a
module.

You can only test one extension at a time this way. To test multiple extensions together, you will
need to close the Module Editor and the Extension Editor, and launch the game from the Module
Manager into regular play mode.

Activating an Extension

In order for a player use an extension, it must be activated. For information on activating
extensions, consult the VASSAL Userls Guide.

Example: Creating an Extension for a Card Game

Card-based games often include expansion sets that increase the number and variety of cards
available for play. Creating an extension for such expansion sets is straightforward, particularly if
the extension requires no new rules or game functionality.

You should be familiar with working with the Extension Editor, before attempting to create an
extension for a card game.

Scan, create, or otherwise acquire all of the graphic images for your new cards before beginning.

1. Open the base module in the Extension Editor.

2. In the Extension Editor, locate the card deck ([Deck] node) you wish to add cards to. (It will
appear disabled and grayed-out).

3. Expand the view of the [Deck] node to display the cards in the deck.
4. Right-click a sample card in the deck and pick Copy.

5. Right-click the [Deck] node and pick Paste. You will now be able to edit the pasted card to
reflect a card from the expansion. You can change the card name or basic image, add new Traits
or Prototypes, or otherwise edit the new card as needed.

6. Repeat Steps 4-5 for any remaining new Cards from the expansion.

7. On the Extension Editor Toolbar, click Save. Save your extension with the suffix .vmdx.
You can now test and activate your extension.

To add complexity or new functionality, your extension could include new Prototypes to reflect new
types of cards available in the extension.

162

Publishing Your Module

Once your module is complete, you can publish it to the vassalengine.org web site, for sharing with
other VASSAL users.

There are over a thousand VASSAL modules already published and more are available all the time.

* If the module is brand new, and no other module exists for the game, you can create a new
module page on vassalengine.org for the module and any related files. Look up the gamels page
on Boardgamegeek.com. The name listed on Boardgamegeek must be used as the title of your
new page.

* If there is already a module for your game, no worries. You can still upload it. There can be any
number of modules for the same game—the more, the merrier! You will not need to create a
new page, however; simply edit the existing page to accommodate your new files.

o. In the Files section of the page, add new links to your newly uploaded files (module and
extensions, if any). Make sure any new files you add have different names from the existing
ones, or you will overwrite someone elsels files.

0. In the Comments section, describe your new module.
For instructions on how to create a new module page, or edit an existing one, see

https://vassalengine.org/wiki/How_to_Create_a_Module_Page

File Types

The following file types can be uploaded to vassalengine.org:

* .vmod for modules
» .vmdx for extensions (.vext is also permissible)
* .vsav for saved game files

» .vlog for log files

Do not place VASSAL files into ZIP file archives. Use the proper registered extension type listed
above.

Limitations

Because of copyright issues, these publishers have specifically asked that modules for their games
not be uploaded to

vassalengine.org:

* Games Workshop

* Avalanche Press

163

https://vassalengine.org/wiki/How_to_Create_a_Module_Page

¢ Sabretooth Games

» SPI (Decision Games) modules may be uploaded except for those related to the following
specific games/series: D-Day at Omaha Beach series, RAF series, War in Europe, and Struggle for
the Galactic Empire.

If uploaded, such modules will be removed from the site, and designers who upload them risk
having publication rights to the site revoked.

Other publishers (and copyright holders) may also ask that specific modules be removed.
Vassalengine.org always complies with such requests.

Module designers who take exception to the stated copyright policies of these publishers are urged
to discuss their concerns with the publishers.

More Information

For more information on publishing vyour files, see https://vassalengine.org/wiki/
Module Section Information

164

https://vassalengine.org/wiki/Module_Section_Information
https://vassalengine.org/wiki/Module_Section_Information

Updating a Module

Inevitably, your module will need to be updated. A new feature or functionality could be added to
the VASSAL engine; you may get a better idea on how to implement one of your modulels features;
or the game itself may be produced in a new edition.

To update a module,

S A

In the Module Manager, right-click the module and pick Edit Module.

In the Configuration Window, right-click the [Module] node and pick Properties.
In Version Number, enter a version number higher than the existing one. Click Ok.
In the Module Editor, make your edits as needed.

Click File | Save As. Save the updated module with a new filename to reflect the new version
number.

Update Guidelines

Follow these guidelines when updating your module.

Latest Version: Make sure you have the latest version of the VASSAL engine installed when
updating your module.

Version Numbering: The version number of a module update must be higher than the one used
in an earlier version. Some designers like to use the major/minor version numbers (x.y)
common in the programming world. A change to the major version number reflects large
changes to the module; a change to minor version reflects smaller ones. For example, a change
from 1.0 to 2.0 reflects a major revision (perhaps a new board or toolbar), while 1.0 to 1.1
reflects a lesser update (such as fixing a typo). You can revise the version number in the
Properties of the [Module] node.

Filename: Always include the new module version number in the updated filename, so players
can quickly tell which version they have without opening it. For example, chess_2.6.vmod
would indicate version 2.6 of a chess module. (Use the Save As button to save the module with a
new filename.)

Graphics: When updating graphics, if possible, use the same filenames as graphics that exist in
the module already. This way, the new graphics will replace the old ones in the module file,
rather than adding new, unnecessary files, which can cause the module to become bloated.

Saved Games: Remember to update any saved games (Pre-Defined Setups) that the module
includes. See Ilm Not Seeing My Changes, below, for more explanation. Remember to add the
updated saved games to the module.

Update Extensions First! Making major changes to the structure of a base module can cause
issues with editing any extensions associated with the module, particularly when the extension
depends on components from the base module.

For example, you revise a Game Piece Palette in the base module from a Tabbed Panel to
Scrolling List. However, there are pieces in an extension that are assigned to the Tabbed Panel,
which no longer exists. In this case, the extension would fail to open because it would depend

165

on the structure of the base module, which has changed.

o. If you plan to make revisions to a module that includes extensions, always edit the extensions
first before editing the base module. In the example above, you might create a temporary
palette in the Extension that would correspond to the new structure of the base module, and
assign the pieces to it. Then you could edit the base module with the new palette. Finally, you
could re-edit the extension and assign these pieces to the new palette.

I0m Not Seeing My Changes

If you don0t see your edits reflected in the game, this may be because you are actually looking at a
saved game, not the actual module. If your module includes saved games (Pre-Defined Setups), then
after making updates, you will not see those changes take place in the module until you update the
saved games. (This is a common oversight among module designers when updating modules. See
Pre-Defined Setups on page 97 for more information.)

To rectify this, launch your module and load the saved game. Make your updates to the saved game,
adding any newly defined pieces or other components, and save it again. Then re-add the updated
saved games to the module. (You may need to use the Saved Game Updater to make sure that any
Game Piece updates are reflected in the new saved game.)

Extensions and Changing Filenames

Extensions for a module are located in the directory <Module File Name>_ext. For example,
extensions for version 1.0 of the Global Thermonuclear War module, named gtw_1.0.vmod, are
located in the directory gtw_1.0_ext.

If you change the file name when updating and include the new version number in the filename
(such as to gtw__2.0.vmod), then Module Manager will no longer be able to locate the extension files
from the old version of the module.

As a result, the extensions will not load automatically with the new version. This is easy to fix, but
players will need to repair this individually in their own Module Manager.

To re-add existing extensions to the updated module,

1. In Module Manager, locate the new version of the module. (Check the Module Version column
for version number.)
2. Right-click the new version and pick Add Extension.
3. Browse to, and then select, an existing extension file.
4. Repeat Steps 2-3 for any other extensions.
VASSAL will re-locate the existing extension files from the old directory <OldModuleName>_ext to a

new directory named <NewModuleName>_ext. (The new extension will be created on the playerQs
system automatically.)

Each extension will be activated by default. For more information on activating and deactivating
extensions, see the VASSAL Userlls Guide.

New Versions of Existing Modules

166

As an open-source project, VASSAL modules are freely editable by others. If youllve got an idea to
improve an existing module, either for your own use or that of others, have at it! You may want to
contact the module designer and propose a collaborative effort, or you may wish to use the existing
module as a starting point for your own new version. There can be any number of VASSAL modules
for a given game.

It0s always courteous to inform the original module designer or maintainer of your efforts. Contact
email addresses of module contributors are maintained on each modulels page.

167

Best Practices

VASSAL is a powerful toolkit. As a result, there may be any number of ways to accomplish a
particular goal, all of which may be equally correct. It0s not possible in this guide to outline all the
methods for accomplish a given objective.

There are, however, a set of best practices gleaned from other VASSAL designers that can save a lot
of time and effort.

The following guidelines may be helpful to keep in mind when designing a module or extension.

Know the Game

Get to know the game before creating a module. You should review the rules in detail even if
youllve played the game itself many times, looking for potential issues that can slow down the
module design process. How does the game proceed? Are there any special rules that standard
VASSAL tools can0t handle and may require custom coding?

Don(t Try to Enforce the Rules

VASSAL is not, in general, intended to enforce rules. Rules enforcement should be left to the players,
just as it would be at a tabletop. Is it possible to make a module track each piecells movement
points, and types of attacks, and attack results? Probably. Is it a good idea? No. The process will
probably involve much work on your part, for little advantage. In addition, VASSAL may not
include the tools you need for proper rules enforcement. A tabletop game proceeds by player
cooperation and mutual knowledge of the game rules; take your cue from that.

Have All the Required Files on Hand

It0s a good idea to collect all the art, text, and other files youlre going to use in the module before
embarking on the creation of a module. The creation process will go much more smoothly if you
have all the files youlll need ahead of time. The art can be gathered by scanning the original
artwork, you can create your own from scratch, or use some combination of the two. You can create
text and help files in any text or HTML editor.

Carefully Target Automation

Therels no denying that automation can be a powerful tool for making gameplay easier. Global Key
Commands and Trigger Actions are excellent methods of automating nearly any standard game
function. Bear in mind, however, that VASSAL is intended to mimic the experience of sitting at a
table with your opponents. As a result, the less automation in the game, the better. During game
play, too much automation reduces the flexibility players have, as decisions may be made for them
automatically.

In addition, a highly automated scheme can make it harder to track down logical errors and game
misfires during the module development stage. Another issue could be the computational time

168

required for automated tasks to execute. In most cases, automation is best used for bookkeeping or
repetitive tasks.

Programmatic Efficiencies

Gameplay can be made more efficient and less time-consuming by taking advantage of VASSALLs
features. For example, many board games include a turn track, which is an actual physical space on
the game board where a turn tracker piece is moved. Use of VASSALDs turn counter can easily
replace this, saving you the trouble of creating the turn track window and graphics. Status markers
that require placement on top of other counters can be simulated by the use of the Layer trait,
without having to drag markers to the board.

Documentation

Players always welcome documentation on how to use your module. Although they may be well-
versed in the boardgame version of the game youUve designed, a VASSAL module may present
unique challenges when it comes to gameplay that need additional explanation. What may be
obvious to you may not be so obvious to players.

You can use the Help menu to add your own designer[s notes or getting started guides, explaining
module concepts. If the game or module is particularly complex, consider adding a Tutorial to show
how the module is intended to work.

Best Practices: New Versions of Existing Modules

Play a Game!

Test out your module before you publish it by playing some full games. You may realize youllve
forgotten about a rule or consideration that may only come to light through gameplay. Professional
game designers insist on rigorous playtesting, and you should too.

Learn from Others

Therells no need to reinvent the wheel. With nearly one thousand VASSAL modules available,
chances are high that a game similar to yours has already been turned into a module. In fact, most
module designers got started by examining the workings of existing modules and learning from
them. Previous module designers may already have solved some of the issues that your game
presents. With modules easily available for view in the Module Editor, why not examine previously
used methods and learn from them?

The vassalengine.org site also features a forum for asking module design questions.

169

Tutorials

Two tutorials are presented here, putting the module design process into practice.
Board Game

This tutorial explains the design of a module for a fictitious game called Zap Wars , which depicts
the epic struggle between a planet of heroic Fuzzy Creatures and their archenemies, the Flesh-
Eating Zombies.

The imaginary Zap Wars boxed set includes the following components:

A strategic map for strategic movement between the Fuzzy and Zombie planets.

A tactical map, where counters are moved to resolve battles. After the battle, counters are
moved back to the strategic map. The tactical map is marked in a rectangular Grid to regulate
movement. Units on the tactical map can maneuver and change their facing on the tactical map
to any of the 4 sides of a Grid cell.

* A Tension Track, a space on the board where dramatic tension levels for each Side are recorded.
* Each Side can deploy an unlimited number of units (spacecraft and related forces).

* The Zombie units can enter an Undead state, which gives them some additional powers. In
particular, all units in the Undead state can fire the dreaded Undeath Ray.

* The Zombie arsenal includes a unit called the Minefield, which can be placed in a hidden
location on the map.

 Battles are resolved using 2 ten-sided dice (d10s).

All data for this tutorial can be found on the vassalengine.org wiki in the File:Zapwars.zip file.

Getting Started

Launch VASSAL. In the Module Manager, pick File | New Module. A new, empty module is created,
shown here.

We right-click the [Module] node, and in the resulting dialog, enter the following:

* Game Name: Zap Wars
* Version Number: 1.0

* Description: Invasion of the Flesh-Eating Zombies!

We can now begin creating the module.

Sides

Sides are usually optional when creating a module. However, in Zap Wars, it will be required: since
some Zombie units will be hidden from the Fuzzy player (using the Invisible Trait), we want to
ensure that the module can clearly distinguish between Sides.

170

* Double-click Definition of Player Sides.
* Enter Fuzzy and click Add, then enter Zombies and click Add.
* Click Ok.

Now when the game begins, each player will be prompted to select one of these Sides to play as.

Maps, Boards, and Grids
The two maps in Zap Wars will each be represented by a different Map Window.

The Tactical Display

The new Zap Wars module comes with one Map Window by default, and we will make this the

Tactical map.
Map Window

In the Configuration Window, double-click the [Map Window] node.

* Give the map a horizontal and vertical padding of 150 pixels each. This gives the window some
blank space around the Grid where players can line up their reinforcing ships before they join
the battle.

The map will have a solid black board, so we should choose a different border color for
highlighting selected pieces. Next to Border for selected counters, click the color selector and
choose a bright green color.

The Tactical map isn’t the main playing area. It’s only needed when the strategic situation
dictates a battle. So we’ll check the Include Toolbar button to show/hide option. Type Tactical
for the Toolbar Button Name. Place your cursor in the Hotkey field and press (together) Ctrl-
SHIFT-T on your keyboard. Now notice that the main control window has a Tactical button.
When you start a game, the button will become enabled and pressing Ctrl-SHIFT-T will bring up
the Tactical window.

Board: A Map Window requires one of more Boards, so we need to create a Board for our new
window. Open the new Tactical Display [Map Window] component.

* Right-click on the [Map Boards] node and select Add Board. Name the board Tactical Grid.

* We’ll want the Grid to be 41x41 square with each square being 50 pixels on a Side. We need one
extra pixel to draw the complete Grid, so choose 2051x2051 as the size. (We will add the actual
Grid shortly.)

» In Background color, click the color selector and set the background color to black.

Grid: Zap Wars needs a Grid to regulate movement. Rather than constructing a map cell-by-cell,

VASSAL defines a complete board and then imposes a Grid on top of it.

171

Expand the [Map Boards] node, right-click on the Tactical Grid component and select Add
Rectangular Grid. Choose 50 for the width/height and 25 for the x/y offset. Check the Show Grid
box; then click the color selector and pick white.

Finally, we can assign a numbering scheme to the Grid. Right- click on the [Rectangular Grid]
component and select Add Grid Numbering. The numbering dialog gives you many options for
assigning a numbering scheme to the Grid. The numbering scheme is used when reporting the
movement of units, but it can also be drawn directly on the Grid. In Zap Wars, the tactical Grid cells
are numbered x,y with 0,0 in the center. We choose ') for the separator, -20 for the
horizontal/vertical starting number, 0 leading zeros, and Numerical (as opposed to Alphabetic)

numbering.
Check the Draw Numbering box and select white for the color.
Congratulations! You’ve defined your first VASSAL Map Window.

Now select File | New Game in the controls window. The Tactical button becomes highlighted, and
clicking it will show the Tactical Display window. The window has a Toolbar with the Image
Capture tool. Clicking this would let you capture the entire map to a graphics file in PNG format. (A
simple screen capture wouldn’t do, since the map is probably too big to fit entirely on your screen.)

It would be a good idea to save your module at this point before continuing. On the Configuration
Window Toolbar, click Save, and save your module as zapwars_1.0.vmod.

The Strategic Display

The main playing area for Zap Wars is the strategic map, plus a Tension track. For both of these,
we’ll use pre-defined artwork. The ZapWarsData folder contains a Strategic.gif and a TensionTrack
file.

In the Configuration Window, right-click on the Zap Wars [Module] node and select Add Map
Window.

Map Window

Name the window Strategic Display. As you did earlier, set the border highlight color to green. This
time, we’ll leave the Include Toolbar button unchecked. This will cause the Strategic Display

172

window to always be visible during a game. We’ll also check the Can contain multiple boards box.
Boards
The Strategic map and Tension Track will each be a separate board that is combined in the window.

* Expand the Strategic Display Map Window node, right-click on the Map Boards component, and
select Add Board.
» For Board Name, enter Strategic Map.

* For board image, click Select and select the Strategic.gif file.

* Repeat the process for the second board and the TensionTrack.gif file.

(= |[ol[x|

Trension

100
200

Grids: The Strategic and Tension Track boards have map Grids included in their artwork. We will
still add Grids to them to regulate placement of units, but the VASSAL-imposed Grid will be
invisible.

* The Strategic board Grid takes a hex Grid with x offset 33, y offset 22, hex height 40.

» The Tension Track takes a rectangular Grid with x/y offset 20 and width/height 40.
In practice, you’ll want to follow the guidelines for aligning a Grid given on page 35.

Board Placement: In the Strategic Display Map Window, the Tension Track should go above the
Strategic Map.

* Double-click on the [Map Boards] component of the Strategic Display component and click
Select Default Board Setup. A dialog is presented for arranging the boards in the window.

* Click Add Row to place two boards on top of one another. In the top slot, select the Tension
Track board from the drop-down menu, and select the Strategic board in the second slot.

173

That completes the definition of the maps in our Zap Wars module. During play, players will drag
pieces from the Strategic display to the Tactical display to complete their battles, then drag them
back to the Strategic display when finished.

Counters

We need a way to generate Game Pieces for the game, so we will a Game Piece Palette. (You’ll find
artwork for the counters in the ZapWarsData folder.)

Game Piece Palette Structure: By default, each module is configured with a single Game Piece
Palette. First, we’ll define its basic structure of the Game Piece Palette. We’ll create two tabs: one for
each Side, the Fuzzy Creatures and the Flesh-Eating Zombies. The Fuzzies tab will have two
different pieces while the Zombies tab will have a scrollable list of different pieces.

Double-click on the [Game Piece Palette] component and enter Zed Warriors for Name and for
Button Text. This will be the name of the window containing the pieces. Enter

Right-click on the Zap Warriors Palette and select Add Tabbed Panel. For Name, enter Counters.
* Right-click on the new Counters Tabbed Panel component and select Add Panel.
» Set the Name to Fuzzies and the Number of Columns to 2.

* Right-click again on the Tabbed Panel and select Add Scrollable List. Name the list Zombies.

Click the Zed Warriors button in the Main Controls Toolbar to see the new palette window. We can
now add Game Pieces to the Palette.

Basic Piece

The simplest possible Game Piece in VASSAL consists of a single image. We need to create a unit
called Fuzzy Base.

* Right-click on the Fuzzies [Panel] component and select Add Single Piece. You’ll be presented
with the Properties dialog for adding Traits to a Game Piece.

* Double-click on Basic Piece in the Current Traits list on the right.

* Set the Name to Base.

* Double-click on the indicated area on the left Side of the dialog, and select FuzzyBase.gif from
the tutorial directory. Now click Ok. You’ll see the new piece appear in the Fuzzies tab. (The
FuzzyBase.gif image uses transparency to give it a shape other than a square.)

Traits

You can customize the behavior of your pieces by selecting Traits for them.

174

Delete: We should to add the Delete Trait to the new Fuzzy Base unit, or counters won0t be able to
be deleted from the game after creation.

In the Fuzzies [Panel] node, double-click the new Fuzzy Base piece. In the Available Traits list,
pick Delete and click Add. The Trait is defined with a default name and default keyboard shortcut.
Click Ok.

Rotation: One of the most common Traits is the ability to rotate. In the Fuzzy counter mix, bases
canft rotate, but warships can. We will create a Warship piece to use this Trait now.

* Right-click on the Fuzzies [Panel] node and select Add Single Piece again. Set the name to
Warship. Select FuzzyShip.gif as the base image and click Ok.

* Now, from the Available Traits list, select Can Rotate and click Add to add the Trait to the
Current Traits list.

* The Can Rotate dialog is now shown. For Number of Allowable Facings, enter 4 (which will
enable each Warship to rotate up, down, left or right.)

We also add Delete to the Fuzzy Warship as we did for the base.

* You can test your counters without having to drag them onto a map. In the main piece
definition dialog, you can right-click on the counter at the top of the window to bring up the
piece’s popup menu, or select the piece and type. You can do the same with the piece in the
Game Piece Palette. When you select the Fuzzy warship and type Ctrl-] and Ctrl-[, the piece will
rotate clockwise and counterclockwise.

This completes the creation of the Fuzzy units. Now we want to create the Zombie base and Zombie
Minefield.

Layers: Layers are the most common way of adding functionality to a Game Piece. A Layer is a set
of images drawn on top of the basic piece. The user can toggle the images on and off, and cycle
through them with key commands.

The Zombie base has two states: normal and Undead.

* Right-click on the Zombies [Scrollable List] component and select Add Single Piece.
* For Name, enter Zombie Base, but do not select an image.
* Select Layer from the Available Traits and click Add.

* Each image that can be cycled through in a Layer is called a Level. We need two levels: one for
each state. One of the two levels will always be drawn, so select Always active.

* Pick ZombieBase.gif for Image 1, and then click the Add Level button.
* Select ZombieBaseUndead.gif for Image 2.

* The Increase/Decrease commands are what the players use to cycle through the levels. Since
there are only two levels, we don’t need both commands. Change the Increase command to
Undead and the key to Ctrl-U. Now when players select a Zombie base and click Ctrl-U, the base
will toggle between its normal and Undead states. If we set the name of level 2 to Undead and
check the is prefix button, then when the Undead level is activated, the name of the piece (used
in auto-reporting moves) will be Undead Zombie Base rather than simply Zombie Base.

175

Advanced Layers: When a Zombie unit is in its Undead state, it can activate its Undeath Ray,
directed either up, down, or to either Side. We’ll add a second Layer to the Zombie Base to
represent the Undeath Ray.

Select Layer again from the list of Available Traits and click Add.

Give the Layer four levels using the images RayN.gif, RayE.gif, RayS.gif, and RayW.gif. Note that
these images also use transparency to offset the depiction from the center of the counter.

The Increase/Decrease commands will change the facing of the ray. Set the Increase command
name to Rotate Ray CW and the Decrease command name to Rotate Ray CCW. (Set the hotkeys
for these commands to Ctrl-X/Ctrl-Z so as not to conflict with the commands to rotate the ship.)

Copy/Paste: The Zombie Warship is similar to the Base, except that the ship can change facing. You
can save a lot of time defining counter by using the Copy/Paste commands in the Configuration
Window.

Right-click on the Zombie Base component and select Copy, and then right-click on the Zombies
[Scrollable List] component and select Paste. Now we need only edit the copy and change a
few things.

Edit the Basic Piece Properties and change the name to Zombie Warship.

Edit the Properties of the first Layer: select Image 1, double-click on the image, and select the
ZombieWarship.gif file.

Partial Rotation: The order of Traits in a Game Piece is important. Generally, a Trait can modify
only those other Traits that appear before (above) it in the list of Current Traits.

Edit the Zombie Warship and add a Can Rotate Trait.

Then select it, and click the Move Up button until the Trait is between the two Layer Traits. This
will make the Zombie Warship depiction rotate without making the Undeath Ray depiction
rotate.

Invisibility and Masking: The Invisible Trait enables a player to completely hide a counter from
another player. The Mask Trait allows one player to hide details of a counter from another player.
The Zombie Minefield will make use of both of these Traits.

176

Add another Single Piece to the Zombies Scrollable List.

Leave the Basic Piece image blank and set the name to Minefield.

Add a Layer with 3 levels, using the mine6.gif, mine8.gif, and mine12.gif images.

Add a Mask Trait. Set the Mask command to Reveal and the keyboard shortcut to Ctrl-R.

Set the View When Masked to the mine.gif image. The Fuzzy player will see only this image
until the minefield is revealed. The display option determines how the Zombie player will see
the counter. We’ll select the Inset style, which displays the masked image in the upper left
corner as a reminder to the Zombie player that the piece is not revealed.

Finally, add the Invisible Trait. Under Can Be Hidden By, select Any of the Specified Sides. Enter
Zombies and click Add. When activated, the counter will be completely invisible to the Fuzzy
player. The zombie player will see a transparent version of the piece against a colored

background. Select black for the background color. The Zombie player can make the piece
invisible and masked in the Game Piece Palette before dragging it onto the map.

Prototypes

Prototypes are a way of allowing many pieces to share a common set of Traits. In Zap Wars, every
Zombie unit has the Undeath Ray capability. While Copy/Paste can be used to create the units
initially, it can be difficult to manage if the module author later decides to make some alteration
that affects many different pieces.

* Right-click on the [Game Piece Prototype Definition] node and select Add Definition. The
dialog for defining a Prototype is the same as the one for defining a Game Piece, but with a
name, and without the Basic Piece.

* Define an Undeath Ray layer just as it exists in the Zombie Base and Warship. (You can create
this as you did earlier, or you actually open the Zombie Base unit, copy the existing Undeath Ray
layer, and then paste it into the dialog for the Prototype.)

» Name the Prototype Definition Zombie.
» Edit the Zombie Base and Warship and replace the Undeath Ray layer with a Prototype Trait,

using the name Zombie.

Now other ship types may be added that use the same prototype. The Undeath Ray layer can be
adjusted later, affecting all of the units at once. Furthermore, a new Trait may be added to all pieces
at once by simply adding the new Trait to the Prototype definition.

Dice Button

We need to add a Dice Button so we can resolve battles. Right-click the Zap Wars [Module] node
and pick Add Dice Button. We change the Name and Button Text to 2d10. In Number of Sides Per
Die, we enter 10. Because the results of each individual die don0t matter, we select Report Total.

A button labeled 2d10 is now shown in the Main Controls Toolbar. Clicking it will return the total of
a 2d10 roll.

Not all component changes are refreshed in real time. It0s a good idea to restart the Module Editor
after making major changes to your module, so you can see the changes implemented.

Next Steps

The Zap Wars module is well underway now. We can continue to add components to refine the
game. Perhaps a Zoom Tool for the strategic display will help view the map better and more clearly.
A Line of Sight Thread would be helpful to quickly measure distances on the Tactical display.
Experiment until youlve created the Zap Wars module to your liking.

Card Game

Besides traditional board games, VASSAL can be used to play card-based games, or games that are

177

mixes of both card and board game. In this tutorial, we will go through the steps for making a
VASSAL module for a pure card game called Raj.

Raj is a bidding game for up to 4 players. Each player maintains a hand of Cards with values from 1
to 15, and bids for a set of tiles that are revealed one at a time.

Data for this module is in the File:Raj.zip file.

Getting Started

Launch VASSAL. In the Module Manager, pick File | New Module. A new, empty module is created,
shown here.

We right-click the [Module] node, and in the resulting dialog, enter the following:

* Game Name: Raj
e Version Number: 1.0

* Description: A Bidding Card Game

We can now begin creating the module.

Sides

To keep Cards clear, we need to specify what Sides are available for players in the game.

» Right-click the [Definition of Available Sides] node.

* In the box, type Red, and click Add. Do the same for Green, Blue, and Purple.

When players load a saved game or join one on the live server, they’ll be prompted which Side they
want to take, or whether they just want to be an observer.

Boards

We will make one Map Window for the main playing area: this will be where the tiles are revealed
and each player(s bid Cards are placed. In addition, we will make one window for each player to
hold his current hand of Cards in.

The Playing Area
Since each module begins with a Map Window by default, we’ll make that one into the playing area.

* Double-click on the [Map Window] node. For Map Name, enter Playing Area. You can leave the
other settings at their default values for now.

Now welll make the playing area blank, but with a definite size.

* Right-click on the [Map Boards] node and select Add Board.

* In Board Name, enter Playing Area. Set board width and height to 800x800. In Background
color, click the color selector and pick a gray or light blue color.

178

Windows for Player Hands

Now for each Side, we’ll create a window for that player’s hand of Cards.

Right-click on the [Module] node and select Add Player Hand.

Under Belongs to Side, enter Red, and then click Add. Only the Red player will be able to access
the contents of this window.

In Map Name, enter Redls Hand.

Leave the Visible to Other Players box unchecked. This will mean that other players won’t
even see the window.

Leave the rest of the fields blank. It’s possible to give these windows an image for a background
by specifying a board, but we’ll simply leave the background blank. Click Ok.

You can use the Redls Hand window to quickly create the windows for the other players.

Right-click the RedOs Hand [Player Hand] node and pick Copy.

Select the [Module] node, right-click, and pick Paste. Repeat this two more times, for a total of
four [Private Hand] nodes.

Double-click one of the copies. Under Belongs to Side, Red is listed to the right. Select Red and
click Remove. Now enter Green in the text box and click Add. Green will now be able to access
this window.

In Map Name, enter Greenls Hand, and then click Ok.

Repeat these steps for Blue and Purple.

Making the Cards

VASSAL board games draw counters from the Game Piece Palette, with an unlimited supply of each
counter. This is not appropriate for Card games. Right-click on the [Game Piece Palette] node and
pick delete to remove it from your Raj module.

Decks of Cards must be added to a Map Window. Cards added to a Deck in the Configuration
Window will be in the Deck when a game is begun. Players click on a Deck to drag the top Card to
their hands or a playing area. Right-clicking on a Deck lets players turn it face-up or face-down,
shuffle it, or reverse the order of Cards in it.

For this module we will create one Deck that contains the tiles the players are bidding for and one
Deck for each player’s set of Cards.

The Deck of tiles goes in the middle of the playing area. Right-click on the Playing Area [Map
Window] map node and select Add Deck.

For Name, enter Tiles.

For X Position and Y Position, use 400 and 400, which will put the Deck in the center of the
Playing Area.

Put the Tile Deck in the middle of the map, at X Position 400,400.

The Width/Height of the Deck is only used when the Deck is empty, so that players can place

179

Cards back into the Deck. We’ll use the size of one of our tiles, 70x94.

Click Ok.

Now right-click on the Tiles [Deck] node and select Add Card to add the first Card to the Deck.

Cards in VASSAL are built the same way as counters. The simplest Card is a Basic Piece with the
Mask Trait. The image of the Basic Piece will be the front of the Card and the image for the Mask
will be the reverse of the Card.

Two Traits are listed under Current Traits: Basic Piece and Mask.

Double-click Basic Piece. For the Name, enter Card 1. Double-click on the left Side of the dialog,
and browse to the tilel.gif image in the rajData directory. Click Ok. You have now defined the
name and the front image for the Card.

Double-click Mask. In Display Style, pick Background. For View When Masked, double-click the
white area and browse to tileBack.gif in the rajData directory. Click Ok. This defines the Card
back.

If we needed more features for our Cards, such as the ability to rotate them Sideways or place
markers on them, that could be done by adding more Traits. They would go above the Mask
Trait if you wanted them to only show when the Card is face up. However, we only need simple
Cards for this tutorial.

Now right-click on the Tile you just made and pick Copy. Then, on the [Deck] node, click Paste.
This will make a copy of the first Card.

Double-click the copy. In Basic Piece, change the name to Card 2, and pick tile2.gif for the Card
front.

Repeat for each of the other 13 tiles (15 in all).

Now you are ready to create each player0s Deck. For the tiles we needed a different image for every
Card. We can save some steps when creating the players' Decks. The players' Cards are simply
numbered 1-15 on the front, so we’ll use a Text Label Trait to write the number on a common
background image.

Right-click on the Playing Area [Map Window] node to create another Deck.

180

We’ll name this Deck RedOs Cards and put it at 400,150 with size 150x240.
Right-click to add a new Card. Use FrontRed.gif for the front and RedBack.gif for the back.

Now select Text Label from the list of Available Traits and click Add. This will be a permanent
label, not changeable during the game, so set the Text to 1 and make the Menu Command
blank.

Set the Font Size to 52. Set the Text Color to black and the Background Color to white.

Set the vertical and horizontal position and the vertical and horizontal justifications all to
Center. Click OKk.

Now with the Text Label selected in the list of Current Traits on the right, click Move Up until
the Text Label Trait is above the Mask Trait. This will ensure that the number is not showing
when the Card is face down.

* Now right-click on the Card you just made and pick Copy. Then, on the Redls Cards [Deck]
node, click Paste. This will make a copy of the first Card.

* Double-click the copy. Edit the Text Label Trait and change the text of the label from 1 to 2.
» Repeat the Copy/Paste/Edit process for each of the other 13 tiles (15 in all).
Having made the Red Deck, the others follow quickly.
* Right-click on the RedOs Cards [Deck] node and pick Copy. Select the [Module] node and pick
Paste. This copy will become the Green Deck.

* Double-click on the copied Deck. Set its Name to Green0s Cards, and set its position to 700,400.

* VASSAL provides a convenient feature to edit many pieces at once. Right-click on the Green
Deck and select Edit All Contained Pieces. You’ll see the Properties window for the first Card,
but all changes you make to Traits in this window will apply to all Cards in the Deck. For the
Mask Trait, set the front image to FrontGreen.gif and the back to GreenBack.gif.

* Repeat the Copy/Paste/Edit process for the Blue and Purple Decks.

During Play

To play, one of the players turns the first tile in the Deck face up. Then each player selects a Card
from his hand, turns it face down, and drags it to the playing area. All players then reveal their
Cards simultaneously. The highest Card wins the tile, but Cards of the same value cancel each other
out.

For example, the players play 12, 6, 8, and 12. The 12s cancel, so the 8 wins. The playing buying the
tile moves it to his area in the playing area and the used Cards are deleted. After all tiles have been
bought, the player with the highest tile total wins.

181

	Vassal Designer’s Guide
	Table of Contents
	Overview
	Preparation
	Graphic File Support
	Graphic Filenames
	Graphic Dimensions
	Non-Rectangular Graphics
	Performance Impact

	The Module Editor
	Launching the Module Editor
	The Module Editor Window
	The [Module] Node
	Default Module Nodes
	Suggested Module Filename Convention
	Next Steps

	Using Properties
	Types of Properties
	Property Names
	Property Values
	Comparing a Property to Another Property
	Game Piece Properties
	Message Formats

	Maps and Boards
	Types of Map Windows
	Map Window Attributes
	Docked Map Window
	Boards
	Creating a Map Window
	Map Options
	Recommended Map Options
	Adding Options to a Map
	At-Start Stacks
	Game Piece Layers
	Image Capture Tool
	Last Move Highlighter
	Line of Sight Thread
	Map Shading
	Mouseover Stack Viewer
	Overview Window
	Re-center Pieces Button
	Stacking Options
	Text Capture Tool
	Toolbar Menu
	Zoom Capability
	Map Grids
	Hex Grid
	Rectangular Grid
	Irregular Grid
	Multi-Zoned Grid
	Zone Highlighters
	Zone Properties

	Sides
	Observer Side
	Next Steps: Restricting Components By Side

	Game Pieces
	Game Piece Palette
	Creating Game Pieces
	Trait Descriptions
	Action Button
	Area of Effect
	Basic Piece
	Can Pivot
	Can Rotate
	Clone
	Delete
	Does Not Stack
	Dynamic Property
	Global Hotkey
	Global Key Command
	Invisible
	Layer
	Mark When Moved
	Marker
	Mask
	Move Fixed Distance
	Movement Trail
	Non-Rectangular
	Place Marker
	Play Sound
	Property Sheet
	Prototype
	Replace with Other
	Report Action
	Restrict Commands
	Restricted Access
	Return to Deck
	Send to Location
	Set Global Property
	Spreadsheet
	Sub-Menu
	Text Label
	Trigger Action

	Prototype Definitions
	Using Prototypes
	Pre-Setting Traits in a Prototype
	Prototype Definitions: Defining a Prototype

	Game Piece Image Definitions
	Game Piece Image Elements
	Game Piece Layouts
	Game Piece Images

	Decks and Cards
	Creating a Deck
	Deck Properties
	Creating Cards
	Cards and Prototypes
	Copying and Pasting Cards
	Editing the Contents of a Deck
	Card Properties
	Deck Global Key Command (GKC)
	Card Decks in Practice

	Generating Random Results
	Dice Button
	Symbolic Dice Button
	Random Text Button

	Additional Module Components
	Action Button
	Charts Window
	Game Piece Inventory Window
	Global Key Command (Module Level)
	Global Options
	Global Property
	Map Window Toolbars
	Multi-Action Button
	Notes Window
	Toolbar Menu
	Turn Counter

	Pre-Defined Setups
	About Saved Games
	The Pre-Defined Setup Menu

	Help Menu
	PDF Help File
	HTML Help File
	Plain Text Help File
	About Screen
	Tutorials

	Additional Topics
	Importing Custom Classes
	Module File Structure
	File Components
	Reducing Module File Size
	Importing an Aide de Camp II Module into VASSAL
	Translations
	Translating the VASSAL Engine

	Creating Module Extensions
	What an Extension Can Do
	What an Extension Canʼt Do
	Using the Extension Editor
	Extension Properties
	Universal Extensions
	Extension Toolbar Menu Items
	Extension Prototypes in the Base Module
	Testing Your Extension
	Activating an Extension

	Publishing Your Module
	File Types
	Limitations
	More Information

	Updating a Module
	Best Practices
	Know the Game
	Donʼt Try to Enforce the Rules
	Have All the Required Files on Hand
	Carefully Target Automation
	Programmatic Efficiencies
	Documentation
	Play a Game!
	Learn from Others

	Tutorials
	Getting Started
	Sides
	Maps, Boards, and Grids
	The Strategic Display
	Counters
	Prototypes
	Dice Button
	Next Steps
	Card Game

